cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 129 results. Next

A327899 Number of set partitions of {1..n} with equal block sizes and equal block sums.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 6, 3, 2, 1, 63, 1, 2, 317, 657, 1, 4333, 1, 9609
Offset: 0

Views

Author

Gus Wiseman, Sep 29 2019

Keywords

Examples

			The a(8) = 6 set partitions:
     {{1,2,3,4,5,6,7,8}}
    {{1,2,7,8},{3,4,5,6}}
    {{1,3,6,8},{2,4,5,7}}
    {{1,4,5,8},{2,3,6,7}}
    {{1,4,6,7},{2,3,5,8}}
  {{1,8},{2,7},{3,6},{4,5}}
		

Crossrefs

Set partitions with equal block-sizes are A038041.
Set partitions with equal block-sums are A035470.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],And[SameQ@@Length/@#,SameQ@@Total/@#]&]],{n,0,8}]

A335642 Expansion of e.g.f. Product_{k>0} 1/(1 - sin(x)^k / k!).

Original entry on oeis.org

1, 1, 3, 9, 35, 147, 710, 3780, 21391, 136063, 932190, 6887232, 55902274, 497726270, 4711586833, 47692742905, 528539419087, 6093676850975, 73010887114406, 943925266298096, 12740929019736310, 175037826035276730, 2561985529052306447, 39817440376814520907, 622315443336146270858
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2020

Keywords

Comments

a(74) is negative. - Vaclav Kotesovec, Oct 04 2020

Crossrefs

Programs

  • Mathematica
    max = 24; Range[0, max]! * CoefficientList[Series[Product[1/(1 - Sin[x]^k/k!), {k, 1, max}], {x, 0, max}], x] (* Amiram Eldar, Oct 04 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, 1-sin(x)^k/k!)))
    
  • PARI
    N=40; x='x+O('x^N); Vec(serlaplace(exp(sum(i=1, N, sum(j=1, N\i, sin(x)^(i*j)/(i*j!^i))))))

Formula

E.g.f.: exp( Sum_{i>0} Sum_{j>0} sin(x)^(i*j)/(i*(j!)^i) ).

A341505 E.g.f.: Product_{i>=1, j>=1} 1 / (1 - x^(i*j) / (i*j)!).

Original entry on oeis.org

1, 1, 4, 14, 77, 427, 3076, 23088, 205316, 1936275, 20611750, 233576818, 2909340750, 38527889389, 551372037898, 8364582709282, 135560933977809, 2320127265064403, 42072789623722518, 802547153889643250, 16118882845967168807, 339268639052195731063
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 13 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; CoefficientList[Series[Product[1/(1 - x^k/k!)^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = If[n == 0, 1, (n - 1)! Sum[Sum[d DivisorSigma[0, d]/(d!)^(k/d), {d, Divisors[k]}] a[n - k]/(n - k)!, {k, 1, n}]]; Table[a[n], {n, 0, 21}]

Formula

E.g.f.: Product_{k>=1} 1 / (1 - x^k / k!)^sigma_0(k).
a(n) ~ c * n!, where c = Product_{k>=2} 1/(1 - 1/k!)^sigma_0(k) = 6.6953800201104498115311861820134227776761182601282551253439990653959... - Vaclav Kotesovec, Feb 20 2021

A348704 a(n) = Sum_{x_1+x_2+ ... +x_n=n, 0 <= x_1<= x_2 <= ... <= x_n <= n} ((n-1)*n)!/((n-x_1)! * (n-x_2)! * ... * (n-x_n)!).

Original entry on oeis.org

1, 1, 3, 170, 1027950, 1079901406584, 448687115051986530720, 89290138377185872821028908288000, 14759276773881730859717740767606565269685350000, 2387650794422480788739162652666454048976136433287918499830000000
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2021

Keywords

Crossrefs

Programs

  • Ruby
    def f(n)
      return 1 if n < 2
      (1..n).inject(:*)
    end
    def A(k, n)
      sum = 0
      m = f((k - 1) * n)
      (0..n).to_a.repeated_combination(k){|i|
        if (0..k - 1).inject(0){|s, j| s + i[j]} == n
          sum += m / (0..k - 1).inject(1){|s, j| s * f(n - i[j])}
        end
      }
      sum
    end
    def A348704(n)
      (0..n).map{|i| A(i, i)}
    end
    p A348704(7)

A104779 a(n) is the sum of entries of n-th Kostka matrix for the partitions of n.

Original entry on oeis.org

1, 1, 3, 7, 21, 57, 182, 565, 1931, 6670, 24537, 92337, 364602, 1477148, 6219031, 26875932, 119930947, 548688443, 2580814003, 12425175838, 61302331782, 309055818656, 1592723862598, 8374123173858, 44917765035082, 245452258746785, 1366116578058731, 7736098938006873
Offset: 0

Views

Author

Alford Arnold, Mar 24 2005

Keywords

Comments

a(n) is the number of symmetric nonnegative integer matrices with sum of entries equal to n, no zero rows or columns, and weakly decreasing row and column sums. - Ludovic Schwob, Aug 29 2023

Examples

			For n=4, {1,1,1,1,1} + {0,1,1,2,3} + {0,0,1,1,2} + {0,0,0,1,3} + {0,0,0,0,1} = 21.
		

Crossrefs

Programs

  • Mathematica
    (* See Meeussen link. *)

Formula

Row sums of A104778.

Extensions

a(7) corrected by Alford Arnold, Dec 31 2010
a(8)-a(21) from Amiram Eldar, May 03 2024

A249619 Triangle T(m,n) = number of permutations of a multiset with m elements and signature corresponding to n-th integer partition (A194602).

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 24, 12, 4, 6, 1, 120, 60, 20, 30, 5, 10, 1, 720, 360, 120, 180, 30, 60, 6, 90, 15, 20, 1, 5040, 2520, 840, 1260, 210, 420, 42, 630, 105, 140, 7, 210, 21, 35, 1, 40320, 20160, 6720, 10080, 1680, 3360, 336, 5040, 840, 1120, 56
Offset: 0

Views

Author

Tilman Piesk, Nov 04 2014

Keywords

Comments

This triangle shows the same numbers in each row as A036038 and A078760 (the multinomial coefficients), but in this arrangement the multisets in column n correspond to the n-th integer partition in the infinite order defined by A194602.
Row lengths: A000041 (partition numbers), Row sums: A005651
Columns: 0: A000142 (factorials), 1: A001710, 2: A001715, 3: A133799, 4: A001720, 6: A001725, 10: A001730, 14: A049388
Last in row: end-2: A037955 after 1 term mismatch, end-1: A001405, end: A000012
The rightmost columns form the triangle A173333:
n 0 1 2 4 6 10 14 21 (A000041(1,2,3...)-1)
m
1 1
2 2 1
3 6 3 1
4 24 12 4 1
5 120 60 20 5 1
6 720 360 120 30 6 1
7 5040 2520 840 210 42 7 1
8 40320 20160 6720 1680 336 56 8 1
A249620 shows the number of partitions of the same multisets. A187783 shows the number of permutations of special multisets.

Examples

			Triangle begins:
  n     0    1    2    3   4   5  6   7   8   9 10
m
0       1
1       1
2       2    1
3       6    3    1
4      24   12    4    6   1
5     120   60   20   30   5  10  1
6     720  360  120  180  30  60  6  90  15  20  1
		

Crossrefs

A294531 E.g.f.: 1/Product_{k>0} (1-x^(2*k-1)/(2*k-1)!).

Original entry on oeis.org

1, 1, 2, 7, 28, 141, 866, 6063, 48560, 438721, 4387582, 48272643, 579642328, 7535456657, 105499762356, 1582665820557, 25322712724800, 430488412249937, 7748929638924950, 147229720951176075, 2944597048114831688, 61836721841638907121, 1360407969674984670156
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2017

Keywords

Crossrefs

Programs

  • Maple
    N:= 40:
    S:= series(1/mul(1-x^j/j!,j=1..N,2),x,N+1):
    seq(coeff(S,x,n)*n!,n=0..N); # Robert Israel, Nov 23 2017
  • Mathematica
    nmax = 30; CoefficientList[Series[1/Product[(1-x^(2*k-1)/(2*k-1)!), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Nov 02 2017 *)

A306039 Expansion of e.g.f. Product_{k>=1} 1/(1 - log(1 + x)^k/k!).

Original entry on oeis.org

1, 1, 2, 3, 14, 0, 359, -1988, 28706, -312210, 4387572, -62769366, 1006242599, -17203315363, 318393704043, -6296931104285, 133039045075494, -2986262905171914, 71018001954178952, -1783064497977512206, 47133484019671647932, -1308274154275749372040, 38042727898691562357962
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 17 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul(1/(1-log(1+x)^k/k!),k=1..100),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[1/(1 - Log[1 + x]^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Sum[Sum[Log[1 + x]^(j k)/(k (j!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS1[n, k] Total[Apply[Multinomial, IntegerPartitions[k], {1}]], {k, 0, n}], {n, 0, 22}]

Formula

E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} log(1 + x)^(j*k)/(k*(j!)^k)).
a(n) = Sum_{k=0..n} Stirling1(n,k)*A005651(k).

A319174 a(n) = n! * [x^n] Product_{k>=1} 1/(1 - x^k/k!)^n.

Original entry on oeis.org

1, 1, 8, 90, 1448, 29750, 747462, 22182741, 759504720, 29468021238, 1277744462870, 61232148035531, 3213710056592796, 183329936018667035, 11294683874759287030, 747379761629288205795, 52864744954736491460768, 3980505280416276751035270, 317877846102688099315299678
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Product[1/(1 - x^k/k!)^n, {k, 1, n}], {x, 0, n}], {n, 0, 18}]
    Table[n! SeriesCoefficient[Exp[n Sum[Sum[x^(j k)/(k (j!)^k), {j, 1, n}], {k, 1, n}]], {x, 0, n}], {n, 0, 18}]

Formula

a(n) = n! * [x^n] exp(n*Sum_{k>=1} Sum_{j>=1} x^(j*k)/(k*(j!)^k)).

A319192 Irregular triangle where T(n,k) is the coefficient of p(y) in n! * Sum_{i1 < ... < in} (x_i1 * ... * x_in), where p is power-sum symmetric functions and y is the integer partition with Heinz number A215366(n,k).

Original entry on oeis.org

1, -1, 1, 2, -3, 1, -6, 3, 8, -6, 1, 24, -30, -20, 15, 20, -10, 1, -120, 90, 144, 40, -15, -90, -120, 45, 40, -15, 1, 720, -840, -504, -420, 630, 504, 210, 280, -105, -210, -420, 105, 70, -21, 1, -5040, 5760, 3360, 1260, -3360, 2688, -1260, -4032, -3360, -1120
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2018

Keywords

Comments

A generalization of the triangle of Stirling numbers of the first kind, these are the coefficients appearing in the expansion of single-part augmented elementary symmetric functions in terms of power-sum symmetric functions.

Examples

			Triangle begins:
   1
  -1   1
   2  -3   1
  -6   3   8  -6   1
  24 -30 -20  15  20 -10   1
The fourth row corresponds to the symmetric function identity: 24 e(4) = -6 p(4) + 3 p(22) + 8 p(31) - 6 p(211) + p(1111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    numPermsOfType[ptn_]:=Total[ptn]!/Times@@ptn/Times@@Factorial/@Length/@Split[ptn];
    Table[(-1)^(Total[primeMS[m]]-PrimeOmega[m])*numPermsOfType[primeMS[m]],{n,5},{m,Sort[Times@@Prime/@#&/@IntegerPartitions[n]]}]
Previous Showing 71-80 of 129 results. Next