cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A191347 Array read by antidiagonals: ((floor(sqrt(n)) + sqrt(n))^k + (floor(sqrt(n)) - sqrt(n))^k)/2 for columns k >= 0 and rows n >= 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 3, 1, 1, 0, 8, 7, 4, 2, 1, 0, 16, 17, 10, 8, 2, 1, 0, 32, 41, 28, 32, 9, 2, 1, 0, 64, 99, 76, 128, 38, 10, 2, 1, 0, 128, 239, 208, 512, 161, 44, 11, 2, 1, 0, 256, 577, 568, 2048, 682, 196, 50, 12, 3, 1
Offset: 0

Views

Author

Charles L. Hohn, May 31 2011

Keywords

Examples

			1, 0,  0,   0,    0,    0,     0,      0,       0,        0,        0, ...
1, 1,  2,   4,    8,   16,    32,     64,     128,      256,      512, ...
1, 1,  3,   7,   17,   41,    99,    239,     577,     1393,     3363, ...
1, 1,  4,  10,   28,   76,   208,    568,    1552,     4240,    11584, ...
1, 2,  8,  32,  128,  512,  2048,   8192,   32768,   131072,   524288, ...
1, 2,  9,  38,  161,  682,  2889,  12238,   51841,   219602,   930249, ...
1, 2, 10,  44,  196,  872,  3880,  17264,   76816,   341792,  1520800, ...
1, 2, 11,  50,  233, 1082,  5027,  23354,  108497,   504050,  2341691, ...
1, 2, 12,  56,  272, 1312,  6336,  30592,  147712,   713216,  3443712, ...
1, 3, 18, 108,  648, 3888, 23328, 139968,  839808,  5038848, 30233088, ...
1, 3, 19, 117,  721, 4443, 27379, 168717, 1039681,  6406803, 39480499, ...
1, 3, 20, 126,  796, 5028, 31760, 200616, 1267216,  8004528, 50561600, ...
1, 3, 21, 135,  873, 5643, 36477, 235791, 1524177,  9852435, 63687141, ...
1, 3, 22, 144,  952, 6288, 41536, 274368, 1812352, 11971584, 79078912, ...
1, 3, 23, 153, 1033, 6963, 46943, 316473, 2133553, 14383683, 96969863, ...
...
		

Crossrefs

Row 1 is A000007, row 2 is A011782, row 3 is A001333, row 4 is A026150, row 5 is A081294, row 6 is A001077, row 7 is A084059, row 8 is A108851, row 9 is A084128, row 10 is A081341, row 11 is A005667, row 13 is A141041.
Row 3*2 is A002203, row 4*2 is A080040, row 5*2 is A155543, row 6*2 is A014448, row 8*2 is A080042, row 9*2 is A170931, row 11*2 is A085447.
Cf. A191348 which uses ceiling() in place of floor().

Programs

  • PARI
    T(n, k) = if (n==0, k==0, my(x=sqrtint(n)); sum(i=0, (k+1)\2, binomial(k, 2*i)*x^(k-2*i)*n^i));
    matrix(9,9, n, k, T(n-1,k-1)) \\ Michel Marcus, Aug 22 2019
    
  • PARI
    T(n, k) = if (k==0, 1, if (k==1, sqrtint(n), T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2));
    matrix(9, 9, n, k, T(n-1, k-1)) \\ Charles L. Hohn, Aug 22 2019

Formula

For each row n>=0 let T(n,0)=1 and T(n,1)=floor(sqrt(n)), then for each column k>=2: T(n,k)=T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2. - Charles L. Hohn, Aug 22 2019
T(n, k) = Sum_{i=0..floor((k+1)/2)} binomial(k, 2*i)*floor(sqrt(n))^(k-2*i)*n^i for n > 0, with T(0, 0) = 1 and T(0, k) = 0 for k > 0. - Michel Marcus, Aug 23 2019

A382209 Numbers k such that 10+k and 10*k are perfect squares.

Original entry on oeis.org

90, 136890, 197402490, 284654260890, 410471246808090, 591899253243012090, 853518312705176632890, 1230772815021611461622490, 1774773545742851022483004890, 2559222222188376152809031436090, 3690396669622092669499600847844090, 5321549438372835441042271613559748890
Offset: 1

Views

Author

Emilio Martín, Mar 18 2025

Keywords

Comments

The limit of a(n+1)/a(n) is 1441.99930651839... = 721+228*sqrt(10) = (19+6*sqrt(10))^2.
If 10*A158490(n) is a perfect square, then A158490(n) is a term.

Examples

			90 is a term because 10+90=100 is a square and 10*90=900 is a square.
(3,1) is a solution to x^2 - 10*y^2 = -1, from which a(n) = 100*y^2-10 = 10*x^2 = 90.
		

Crossrefs

Subsequence of A158490.
Cf. A383734 = 2*A008843 (2+k and 2*k are squares).
Cf. 5*A075796^2 (5+k and 5*k are squares).
Cf. 5*A081071 (20+k and 20*k are squares).
Cf. A245226 (m such that k+m and k*m are squares).

Programs

  • Mathematica
    CoefficientList[Series[ 90*(1 + 78*x + x^2)/((1 - x)*(1 - 1442*x + x^2)),{x,0,11}],x] (* or *) LinearRecurrence[{1443,-1443,1},{90,136890,197402490},12] (* James C. McMahon, May 08 2025 *)
  • Python
    from itertools import islice
    def A382209_gen(): # generator of terms
        x, y = 30, 10
        while True:
            yield x**2//10
            x, y = x*19+y*60, x*6+y*19
    A382209_list = list(islice(A382209_gen(),30)) # Chai Wah Wu, Apr 24 2025

Formula

a(n) = 10 * ((1/2) * (3+sqrt(10))^(2*n-1) + (1/2) * (3-sqrt(10))^(2*n-1))^2.
a(n) = 10 * (sinh((2n-1) * arcsinh(3)))^2.
a(n) = 10 * A173127(n)^2 = 100 * A097315(n)^2 - 10 (negative Pell's equation solutions).
a(n+2) = 1442 * a(n+1) - a(n) + 7200.
G.f.: 90*(1 + 78*x + x^2)/((1 - x)*(1 - 1442*x + x^2)). - Stefano Spezia, Apr 24 2025

A005673 a(n) = F(n+2) - 2^[ (n+1)/2 ] - 2^[ n/2 ] + 1.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 6, 11, 24, 42, 81, 138, 250, 419, 732, 1214, 2073, 3414, 5742, 9411, 15664, 25586, 42273, 68882, 113202, 184131, 301428, 489654, 799273, 1297118, 2112774, 3426275, 5571816, 9030858, 14668209, 23764602, 38563882, 62459555, 101285580, 164007278
Offset: 0

Views

Author

Keywords

References

  • R. K. Guy, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000045.

Programs

  • Maple
    A005673:=-z**4/(z-1)/(z**2+z-1)/(-1+2*z**2); # Conjectured by Simon Plouffe in his 1992 dissertation.
  • Mathematica
    LinearRecurrence[{2,2,-5,0,2},{0,0,0,0,1},40] (* Harvey P. Dale, Apr 22 2024 *)

Formula

G.f.: x^4/((1-x)*(1-x-x^2)*(1-2x^2)); a(n) = 2*a(n-1)+2*a(n-2)-5*a(n-3)+2*a(n-5); a(n+1) = Sum_{k=0..n} (2^floor(k/2)-1)*F(n-k). - Paul Barry, Jul 28 2004

A089926 a(n) = 12*a(n-1) + a(n-2), a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 73, 882, 10657, 128766, 1555849, 18798954, 227143297, 2744518518, 33161365513, 400680904674, 4841332221601, 58496667563886, 706801342988233, 8540112783422682, 103188154744060417, 1246797969712147686
Offset: 0

Views

Author

Paul Barry, Nov 15 2003

Keywords

Comments

The family of recurrences a(n) = 2*k*a(n-1) + a(n-2), a(0)=1, a(1)=k has solution a(n) = ((k+sqrt(k^2+1))^n + (k-sqrt(k^2+1))^n)/2; a(n) = Sum_{j=0..floor(n/2)} C(n,2k)*(k^2+1)^jk^(n-2j); a(n) = T(n,ki)*(-i)^n; e.g.f. exp(kx)*cosh(sqrt(k^2+1)*x).

Crossrefs

Essentially the same as A041060.

Formula

E.g.f.: exp(6x)*cosh(sqrt(37)x);
a(n) = ((6+sqrt(37))^n + (6-sqrt(37))^n)/2;
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)*37^k*6^(n-2k).
a(n) = T(n, 6i)*(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2 = -1.
G.f.: (1-6x)/(1-12*x-x^2). - Philippe Deléham, Nov 21 2008

A116559 Expansion of g.f. x*(1+x+2*x^2+2*x^3+5*x^4+5*x^5-3*x^6+2*x^7-x^8-x^9)/(1-6*x^6-x^12).

Original entry on oeis.org

0, 1, 1, 2, 2, 5, 5, 3, 8, 11, 11, 30, 30, 19, 49, 68, 68, 185, 185, 117, 302, 419, 419, 1140, 1140, 721, 1861, 2582, 2582, 7025, 7025, 4443, 11468, 15911, 15911, 43290, 43290, 27379, 70669, 98048, 98048, 266765, 266765, 168717, 435482, 604199, 604199, 1643880, 1643880, 1039681
Offset: 0

Views

Author

Roger L. Bagula, Mar 17 2006

Keywords

Programs

  • Mathematica
    CoefficientList[Series[x*(1 + x + 2*x^2 + 2*x^3 + 5*x^4 + 5*x^5 - 3*x^6 + 2*x^7 - x^8 - x^9)/(1 - 6*x^6 - x^12), {x, 0, 50}], x] (* G. C. Greubel, Sep 20 2017 *)
  • PARI
    x='x+O('x^50); Vec(x*(1 + x + 2*x^2 + 2*x^3 + 5*x^4 + 5*x^5 - 3*x^6 + 2*x^7 - x^8 - x^9)/(1 - 6*x^6 - x^12)) \\ G. C. Greubel, Sep 20 2017

Formula

From R. J. Mathar, Nov 28 2008: (Start)
a(n) = 6*a(n-6) + a(n-12).
G.f.: x*(1+x+2*x^2+2*x^3+5*x^4+5*x^5-3*x^6+2*x^7-x^8-x^9)/(1-6*x^6-x^12).
a(6n+1) = A005667(n). (End)

Extensions

More terms added by G. C. Greubel, Sep 20 2017
Better name using given g.f. from Joerg Arndt, Oct 26 2024

A005671 Nearest integer to tan(n)^2.

Original entry on oeis.org

0, 2, 5, 0, 1, 11, 0, 1, 46, 0, 0, 51054, 0, 0, 52, 1, 0, 12, 1, 0, 5, 2, 0, 3, 5, 0, 1, 11, 0, 1, 41, 0, 0, 5672, 0, 0, 60, 1, 0, 13, 1, 0, 5, 2, 0, 3, 4, 0, 1, 10, 0, 1, 37, 0, 0, 2042, 0, 0, 69, 1, 0, 14, 1, 0, 6, 2, 0, 3, 4, 0, 1
Offset: 0

Views

Author

Keywords

Programs

  • Mathematica
    Round[Tan[Range[0,70]]^2] (* Harvey P. Dale, Aug 01 2016 *)
Previous Showing 21-26 of 26 results.