cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A104312 Prime coefficient of x^n in (x^3+x^2+x+1)^n for n in A104311.

Original entry on oeis.org

3, 31, 101, 3823, 2266366724843687556556015073508073201681
Offset: 1

Views

Author

T. D. Noe, Mar 01 2005

Keywords

Comments

a(6), which corresponds to n=649, is too large to include.

Crossrefs

Cf. A005725 (quadrinomial coefficients), A104314 (nontrivial prime pentanomial coefficients).

Programs

  • Mathematica
    f=1; Do[f=Expand[f*(x^3+x^2+x+1)]; s=Coefficient[f, x, n]; If[PrimeQ[s], Print[{n, s}]], {n, 1000}]

A213808 Triangle of numbers C^(7)(n,k) of combinations with repetitions from n different elements over k for each of them not more than 7 appearances allowed.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 462, 1, 7, 28, 84, 210, 462, 924, 1716, 1, 8, 36, 120, 330, 792, 1716, 3432, 6427, 1, 9, 45, 165, 495, 1287, 3003, 6435, 12861, 24229, 1, 10, 55, 220, 715, 2002, 5005, 11440, 24300, 48520, 91828
Offset: 0

Views

Author

Keywords

Comments

For k <= 6, the triangle coincides with triangle A213745.

Examples

			Triangle begins
n/k |  0     1     2     3     4     5     6     7     8
----+---------------------------------------------------
  0 |  1
  1 |  1     1
  2 |  1     2     3
  3 |  1     3     6    10
  4 |  1     4    10    20    35
  5 |  1     5    15    35    70   126
  6 |  1     6    21    56   126   252   462
  7 |  1     7    28    84   210   462   924  1716
  8 |  1     8    36   120   330   792  1716  3432  6427
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^r*Binomial[n, r]*Binomial[n - 8*r + k - 1, n - 1], {r, 0, Floor[k/8]}], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Nov 25 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, sum(r=0, floor(k/8), (-1)^r*binomial(n,r)*binomial(n-8*r + k-1,n-1))), ", "))) \\ G. C. Greubel, Nov 25 2017

Formula

T(n,k) = Sum_{r=0..floor(k/8)} (-1)^r*C(n,r)*C(n-8*r+k-1, n-1).
T(n,0)=1, T(n,1)=n, T(n,2)=A000217(n) for n > 1, T(n,3)=A000292(n) for n >= 3, T(n,4)=A000332(n) for n >= 7, T(n,5)=A000389(n) for n >= 9, T(n,6)=A000579(n) for n >= 11, T(n,7)=A000580(n) for n >= 13.

A378405 a(n) = Sum_{k=0..floor(n/2)} binomial(n,k) * binomial(n+k,n-2*k).

Original entry on oeis.org

1, 1, 3, 13, 47, 171, 651, 2507, 9703, 37831, 148393, 584673, 2312267, 9174179, 36500257, 145566333, 581746503, 2329206823, 9341025429, 37516150599, 150874376997, 607479424817, 2448608334087, 9879562243961, 39897969991075, 161260133795371
Offset: 0

Views

Author

Seiichi Manyama, Nov 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]*Binomial[n + k, n - 2*k], {k, 0, n/2}], {n, 0, 30}] (* Vaclav Kotesovec, Nov 25 2024 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n, k)*binomial(n+k, n-2*k));

Formula

a(n) = [x^n] (1 + x + x^2 * (1 + x)^2)^n.
a(n) ~ sqrt(c) * d^n / sqrt(Pi*n), where d = 4.1236218756427610008124277125077732535524468472302771364162049292... is the greatest root of the equation 31 - 256*d + 30*d^2 - 104*d^3 + 27*d^4 = 0 and c = 0.3580097056143148810957018324419771260252367819271313726816... is the positive real root of the equation -31 - 3024*c + 51376*c^2 - 257536*c^3 + 386304*c^4 = 0. - Vaclav Kotesovec, Nov 25 2024

A378406 a(n) = Sum_{k=0..floor(n/2)} binomial(n,k) * binomial(n+2*k,n-2*k).

Original entry on oeis.org

1, 1, 3, 16, 67, 266, 1116, 4803, 20707, 89665, 390868, 1712283, 7527664, 33196606, 146800811, 650724896, 2890442051, 12862496583, 57331583055, 255915024714, 1143845768892, 5118643987872, 22930389117771, 102824420890590, 461502269341936, 2073064313021416
Offset: 0

Views

Author

Seiichi Manyama, Nov 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n, k)*binomial(n+2*k, n-2*k));

Formula

a(n) = [x^n] (1 + x + x^2 * (1 + x)^3)^n.

A104311 Numbers n such that the coefficient of x^n in (x^3+x^2+x+1)^n is prime.

Original entry on oeis.org

2, 4, 5, 8, 73, 649
Offset: 1

Views

Author

T. D. Noe, Mar 01 2005

Keywords

Comments

n such that A005725(n) is prime. No other n<16000. The primes are in A104312. Only coefficients of the x, x^n, x^(2n) and x^(3n-1) terms can be prime; the coefficients of x and x^(3n-1) terms are prime whenever n is prime.
Any further terms are > 500000. - Lucas A. Brown, Oct 04 2024

Crossrefs

Cf. A005725 (quadrinomial coefficients).

Programs

  • Mathematica
    f=1; Do[f=Expand[f*(x^3+x^2+x+1)]; s=Coefficient[f, x, n]; If[PrimeQ[s], Print[{n, s}]], {n, 1000}]
Previous Showing 11-15 of 15 results.