cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 60 results. Next

A250041 Numbers n such that m = floor(n/10) is not coprime to n and, if nonzero, m is also a term of the sequence.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 20, 22, 24, 26, 28, 30, 33, 36, 39, 40, 42, 44, 46, 48, 50, 55, 60, 62, 63, 64, 66, 68, 69, 70, 77, 80, 82, 84, 86, 88, 90, 93, 96, 99, 200, 202, 204, 205, 206, 208, 220, 222, 224, 226, 228, 240, 242, 243, 244, 246, 248, 249, 260, 262
Offset: 1

Views

Author

Stanislav Sykora, Dec 07 2014

Keywords

Comments

Equivalent definition 1: Assuming a base b (in this case b=10), let us say that a positive integer k has the property RTNC(b) when m=floor(k/b) is not coprime to k, i.e., gcd(k,m)>1. Then k belongs to this sorted list if (i) it has the property RTNC(b) and (ii) m is either 0 or belongs also to the list.
Equivalent definition 2: Every nonempty prefix of a(n) in base b has the property RTNC(b).
Notes: The acronym RTNC stands for 'Right-Truncated is Not Coprime' (negation of the property RTC defined in A250040). We could also say that a(n) are right-truncatable numbers with property RTNC(b).
This particular list is an infinite subset of A248500.

Examples

			243 is a member because (243,24), (24,2) and (2,0) are noncoprime pairs.
155 is not a member because gcd(15,1)=1.
		

Crossrefs

Other lists of right-truncatable numbers with the property RTNC(b): A005823 (b=3), A250037 (b=4), A250039 (b=16), A250043 (b=9), A250045 (b=8), A250047 (b=7), A250049 (b=6), A250051 (b=5).

Programs

  • PARI
    See the link.
    
  • PARI
    is_rtnc(n, b=10) = {while (((m=gcd(n\b, n)) != 1), if (m == 0, return (1)); n = n\b; ); return (0); } \\ Michel Marcus, Jan 29 2015

A250043 Numbers n such that m = floor(n/9) is not coprime to n and, if nonzero, m is also a term of the sequence.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 18, 20, 22, 24, 26, 27, 30, 33, 36, 38, 40, 42, 44, 45, 50, 54, 56, 57, 58, 60, 62, 63, 70, 72, 74, 76, 78, 80, 162, 164, 165, 166, 168, 170, 180, 182, 184, 185, 186, 188, 198, 200, 202, 204, 206, 216, 218, 219, 220, 222, 224, 234, 236
Offset: 1

Views

Author

Stanislav Sykora, Jan 15 2015

Keywords

Comments

See the comments in A250041 which all apply, except for the setting of the base, b=9. In particular, they define the property RTNC(b).

Crossrefs

Cf. A250041 (b=10), A250042.
Other lists of right-truncatable numbers with the property RTNC(b): A005823 (b=3), A250037 (b=4), A250039 (b=16), A250045 (b=8), A250047 (b=7), A250049 (b=6), A250051 (b=5).

Programs

  • PARI
    See the link
    
  • PARI
    is_rtnc(n, b=9) =  {while (((m=gcd(n\b, n)) != 1), if (m == 0, return (1)); n = n\b;); return (0);} \\ Michel Marcus, Jan 17 2015

A250045 Numbers n such that m = floor(n/8) is not coprime to n and, if nonzero, m is also a term of the sequence.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 16, 18, 20, 22, 24, 27, 30, 32, 34, 36, 38, 40, 45, 48, 50, 51, 52, 54, 56, 63, 128, 130, 132, 134, 144, 146, 147, 148, 150, 160, 162, 164, 165, 166, 176, 178, 180, 182, 192, 194, 195, 196, 198, 216, 219, 222, 240, 242, 243, 244, 245, 246
Offset: 1

Views

Author

Stanislav Sykora, Jan 15 2015

Keywords

Comments

See the comments in A250041 which all apply, except for the setting of the base, b=8. In particular, they define the property RTNC(b).

Crossrefs

Cf. A250041 (b=10), A250044.
Other lists of right-truncatable numbers with the property RTNC(b):
A005823 (b=3), A250037 (b=4), A250039 (b=16), A250043 (b=9), A250047 (b=7), A250049 (b=6), A250051 (b=5).

Programs

  • PARI
    See the link
    
  • PARI
    is_rtnc(n, b=8) = {while (((m=gcd(n\b, n)) != 1), if (m == 0, return (1)); n = n\b; ); return (0); } \\ Michel Marcus, Jan 22 2015

A154314 Numbers with not more than two distinct digits in ternary representation.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 36, 37, 39, 40, 41, 43, 44, 49, 50, 52, 53, 54, 56, 60, 62, 67, 68, 70, 71, 72, 74, 76, 77, 78, 79, 80, 81, 82, 84, 85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 120, 121, 122
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 07 2009

Keywords

Crossrefs

Complement of A031944.
Union of A032924, A005823 and A005836.

Programs

  • Haskell
    import Data.List (findIndices)
    a154314 n = a154314_list !! (n-1)
    a154314_list = findIndices (/= 3) a212193_list
    -- Reinhard Zumkeller, May 04 2012
    
  • Mathematica
    Select[Range[0,200],Length[Union[IntegerDigits[#,3]]]<3&] (* Harvey P. Dale, Nov 23 2012 *)
  • PARI
    is(n)=#Set(digits(n,3))<3 \\ Charles R Greathouse IV, Mar 17 2014

Formula

A043530(a(n)) <= 2.
A212193(a(n)) <> 3. - Reinhard Zumkeller, May 04 2012
a(n) >> n^1.58..., where the exponent is log(3)/log(2). - Charles R Greathouse IV, Mar 17 2014
Sum_{n>=2} 1/a(n) = 5.47555542241781419692840472181029603722178623821762258873485212626135391726959422416350447132335696748507... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Apr 14 2025

A250049 Numbers n such that m = floor(n/6) is not coprime to n and, if nonzero, m is also a term of the sequence.

Original entry on oeis.org

2, 3, 4, 5, 12, 14, 16, 18, 21, 24, 26, 28, 30, 35, 72, 74, 75, 76, 84, 86, 88, 96, 98, 100, 108, 110, 111, 112, 126, 129, 144, 146, 147, 148, 156, 158, 160, 168, 170, 172, 180, 182, 183, 184, 185, 210, 215, 432, 434, 435, 436, 444, 446, 448, 450, 453, 455
Offset: 1

Views

Author

Stanislav Sykora, Jan 31 2015

Keywords

Comments

See the comments in A250041 which all apply, except for the setting of the base, b=6. In particular, they define the property RTNC(b).

Crossrefs

Cf. A250041 (b=10), A250046.
Other lists of right-truncatable numbers with the property RTNC(b):
A005823 (b=3), A250037 (b=4), A250039 (b=16), A250043 (b=9), A250045 (b=8), A250047 (b=7), A250051 (b=5).

Programs

  • PARI
    \\ See A250041 for b=6
    
  • PARI
    is_rtnc(n, b=6) = {while (((m=gcd(n\b, n)) != 1), if (m == 0, return (1)); n = n\b;); return (0); } \\ Michel Marcus, Jan 31 2015

A250051 Numbers n such that m = floor(n/5) is not coprime to n and, if nonzero, m is also a term of the sequence.

Original entry on oeis.org

2, 3, 4, 10, 12, 14, 15, 18, 20, 22, 24, 50, 52, 54, 60, 62, 63, 64, 70, 72, 74, 75, 78, 90, 92, 93, 94, 100, 102, 104, 110, 112, 114, 120, 122, 123, 124, 250, 252, 254, 260, 262, 264, 270, 272, 273, 274, 300, 302, 303, 304, 310, 312, 314, 315, 318
Offset: 1

Views

Author

Stanislav Sykora, Jan 31 2015

Keywords

Comments

See the comments in A250041 which all apply, except for the setting of the base, b=5. In particular, they define the property RTNC(b).

Crossrefs

Cf. A250041 (b=10), A250046.
Other lists of right-truncatable numbers with the property RTNC(b):
A005823 (b=3), A250037 (b=4), A250039 (b=16), A250043 (b=9), A250045 (b=8), A250047 (b=7), A250049 (b=6).

Programs

  • PARI
    \\ See A250041 for b=5
    
  • PARI
    is_rtnc(n, b=5) = {while (((m=gcd(n\b, n)) != 1), if (m == 0, return (1)); n = n\b;); return (0);} \\ Michel Marcus, Jan 31 2015

A125292 Numbers having either no ones or no twos in their ternary representation.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 13, 18, 20, 24, 26, 27, 28, 30, 31, 36, 37, 39, 40, 54, 56, 60, 62, 72, 74, 78, 80, 81, 82, 84, 85, 90, 91, 93, 94, 108, 109, 111, 112, 117, 118, 120, 121, 162, 164, 168, 170, 180, 182, 186, 188, 216, 218, 222, 224, 234, 236, 240, 242, 243
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 26 2006

Keywords

Comments

Complement of A125293; union of A005823 and A005836;
A125291(a(n)) = 1; A062756(a(n))*A081603(a(n)) = 0.

Crossrefs

Subsequence of A154314.

Programs

  • Mathematica
    not[n_]:=Module[{c=DigitCount[n,3]},c[[1]]==0||c[[2]]==0]; Select[ Range[ 250],not] (* Harvey P. Dale, Dec 15 2012 *)
  • PARI
    is(n, base=3) = #Set(select(sign, digits(n, base)))==1 \\ Rémy Sigrist, Mar 28 2020
    
  • PARI
    a(n, base=3) = { for (w=0, oo, if (n<=(base-1)*2^w, my (d=1+(n-1)\2^w, k=2^w+(n-1)%(2^w)); return (d*fromdigits(binary(k), base)), n -= (base-1)*2^w)) } \\ Rémy Sigrist, Mar 28 2020

A306556 Integers that appear as (unreduced) numerators of segment endpoints when a ternary Cantor set is created.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 9, 18, 19, 20, 21, 24, 25, 26, 27, 54, 55, 56, 57, 60, 61, 62, 63, 72, 73, 74, 75, 78, 79, 80, 81, 162, 163, 164, 165, 168, 169, 170, 171, 180, 181, 182, 183, 186, 187, 188, 189, 216, 217, 218, 219, 222, 223, 224, 225, 234, 235, 236, 237, 240, 241, 242, 243
Offset: 1

Views

Author

Dan Dima, Feb 23 2019

Keywords

Comments

Nonnegative integers whose ternary representation contains only digits 0 and 2 except for at most a single digit 1 that is followed only by 0's.
Nonnegative integers that can be written in base 3 using only 0's and 2's, allowing the use of the "decimal" point (.) and replacing ....10..0(.) by ....02..2(.)2222...
Note that fractions are not reduced.
List of integers in the closure of the ternary Cantor set under multiplication by 3. The closure is the union of the translated ternary Cantor sets spanning [a(1), a(2)], [a(3), a(4)], [a(5), a(6)], ... . - Peter Munn, Jul 09 2019

Examples

			On 1st step we have [0,1/3] U [2/3,3/3] so we get a(1)=0, a(2)=1, a(3)=2, a(4)=3.
On 2nd step we have [0,1/9] U [2/9,3/9] U [6/9,7/9] U [8/9,9/9] so we get in addition a(5)=6, a(6)=7, a(7)=8, a(8)=9.
		

Crossrefs

Programs

  • PARI
    A306556(n) = {sm=0;while(n>1,ex=floor(log(n)/log(2));if(n-2^ex==0,sm=sm+3^(ex-1),sm=sm+2*3^(ex-1));n=n-2^ex);return(sm)}
    
  • PARI
    a(n) = n--; fromdigits(binary(n>>1),3)*2 + (n%2); \\ Kevin Ryde, Apr 23 2021

Formula

a(1)=0, a(2)=1;
a(2^n) = 3^(n-1) for n >= 1;
a(2^n+k) = 2*3^(n-1) + a(k) for 1 <= k <= 2^n.
From Peter Munn, Jul 09 2019: (Start)
a(2n-1) = A005823(n) = A191106(n)-1.
a(2n) = A191106(n) = A005823(n)+1.
a(2n-1) = (A055247(2n-1)-1)/3.
a(2n) = (A055247(2n) +1)/3.
a(2n-1) = (A191108(n)-1)/2.
a(2n) = (A191108(n)+1)/2.
(End)

A328849 Numbers in whose primorial base expansion only even digits appear.

Original entry on oeis.org

0, 4, 12, 16, 24, 28, 60, 64, 72, 76, 84, 88, 120, 124, 132, 136, 144, 148, 180, 184, 192, 196, 204, 208, 420, 424, 432, 436, 444, 448, 480, 484, 492, 496, 504, 508, 540, 544, 552, 556, 564, 568, 600, 604, 612, 616, 624, 628, 840, 844, 852, 856, 864, 868, 900, 904, 912, 916, 924, 928, 960, 964, 972, 976, 984, 988, 1020, 1024
Offset: 1

Views

Author

Antti Karttunen, Oct 30 2019

Keywords

Comments

Numbers for which the prime factor form (A276086) of their primorial base expansion is a square, A000290.

Examples

			144 is written as "4400" in primorial base (A049345), because 4*A002110(3) + 4*A002110(2) + 0*A002110(1) + 0*A002110(0) = 4*30 + 4*6 = 144, thus all the digits are even and 144 is included in this sequence.
		

Crossrefs

Cf. A328834, A328850 (squares in this sequence).
Similar sequences: A005823 (ternary), A014263 (decimal), A062880 (quaternary), A351893 (factorial base).

Programs

  • Mathematica
    With[{max = 5}, bases = Prime@ Range[max, 1, -1]; nmax = Times @@ bases - 1; prmBaseDigits[n_] := IntegerDigits[n, MixedRadix[bases]]; Select[Range[0, nmax, 2], AllTrue[prmBaseDigits[#], EvenQ] &]] (* Amiram Eldar, May 23 2023 *)
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    isA328849(n) = issquare(A276086(n));

Formula

a(n) = 2*A328770(n).
A000196(A276086(a(n))) = A276086(a(n)/2) = A328834(n).

A097252 Numbers whose set of base 6 digits is {0,5}.

Original entry on oeis.org

0, 5, 30, 35, 180, 185, 210, 215, 1080, 1085, 1110, 1115, 1260, 1265, 1290, 1295, 6480, 6485, 6510, 6515, 6660, 6665, 6690, 6695, 7560, 7565, 7590, 7595, 7740, 7745, 7770, 7775, 38880, 38885, 38910, 38915, 39060, 39065, 39090, 39095, 39960, 39965
Offset: 0

Views

Author

Ray Chandler, Aug 03 2004

Keywords

Comments

n such that there exists a permutation p_1, ..., p_n of 1, ..., n such that i + p_i is a power of 6 for every i.

Crossrefs

Programs

  • Magma
    [n: n in [0..40000] | Set(IntegerToSequence(n, 6)) subset {0, 5}]; // Vincenzo Librandi, May 25 2012
    
  • Mathematica
    fQ[n_]:=Union@Join[{0,5},IntegerDigits[n,6]]=={0,5};Select[Range[0,40000],fQ] (* Vincenzo Librandi, May 25 2012 *)
    FromDigits[#,6]&/@Tuples[{ 0,5},6] (* Harvey P. Dale, Aug 15 2021 *)
  • Python
    def A079252(n): return 5*int(bin(n)[2:],6) # Chai Wah Wu, Apr 04 2025

Formula

a(n) = 5*A033043(n).
a(2n) = 6*a(n), a(2n+1) = a(2n)+5.
Previous Showing 21-30 of 60 results. Next