A262057 Array based on the Stanley sequence S(0), A005836, by antidiagonals.
0, 2, 1, 7, 5, 3, 21, 8, 6, 4, 23, 22, 16, 11, 9, 64, 26, 24, 17, 14, 10, 69, 65, 50, 25, 19, 15, 12, 71, 70, 67, 53, 48, 20, 18, 13, 193, 80, 78, 68, 59, 49, 34, 29, 27, 207, 194, 152, 79, 73, 62, 51, 35, 32, 28, 209, 208, 196, 161, 150, 74, 63, 52, 43, 33, 30
Offset: 1
Examples
From the top-left corner, this array starts: 0 2 7 21 23 64 1 5 8 22 26 65 3 6 16 24 50 67 4 11 17 25 53 68 9 14 19 48 59 73 10 15 20 49 62 74
Links
- Max Barrentine and Robert Israel, Table of n, a(n) for n = 1..10011 (first 141 antidiagonals, flattened; n=1..77 from Max Barrentine)
Programs
-
MATLAB
function A = A262057( M, N ) % to get first M antidiagonals using x up to N B = cell(1,M); F = zeros(M,N+1); countdowns = [M:-1:1]; for x=0:N if max(countdowns) == 0 break end for i=1:M if F(i,x+1) == 0 newforb = 2*x - B{i}; newforb = newforb(newforb <= N & newforb >= 1); F(i,newforb+1) = 1; B{i}(end+1) = x; countdowns(i) = countdowns(i)-1; break end end end if max(countdowns) > 0 [~,jmax] = max(countdowns); jmax = jmax(1); error ('Need larger N: B{%d} has only %d elements',jmax,numel(B{jmax})); end A = zeros(1,M*(M+1)/2); k = 0; for n=1:M for i=1:n k=k+1; A(k) = B{n+1-i}(i); end end end % Robert Israel, Feb 03 2016
-
Maple
M:= 20: # to get the first M antidiagonals for i from 1 to M do B[i]:= {}: F[i]:= {}: od: countdowns:= Vector(M,j->M+1-j): for x from 0 while max(countdowns) > 0 do for i from 1 do if not member(x, F[i]) then F[i]:= F[i] union map(y -> 2*x-y, B[i]); B[i]:= B[i] union {x}; countdowns[i]:= countdowns[i] - 1; break fi od; od: seq(seq(B[n+1-i][i], i=1..n),n=1..M); # Robert Israel, Feb 03 2016
Formula
A006997(A(n, k)) = k - 1. - Rémy Sigrist, Jan 06 2024
Comments