cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A020660 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 8.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 59, 60, 61, 62, 63, 64, 65, 67, 69, 70, 71, 72, 74, 75, 76, 77, 78, 79, 81, 84, 85, 87, 88, 89, 91, 92, 93, 95, 96, 97
Offset: 1

Views

Author

Keywords

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • Maple
    Noap:= proc(N,m)
    # N terms of earliest increasing seq with no m-term arithmetic progression
    local A,forbid,n,c,ds,j;
    A:= Vector(N):
    A[1..m-1]:= <($1..m-1)>:
    forbid:= {m}:
    for n from m to N do
      c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
      A[n]:= c;
      ds:= convert(map(t -> c-t, A[m-2..n-1]),set);
      for j from m-2 to 2 by -1 do
        ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]),set);
        if ds = {} then break fi;
      od;
      forbid:= select(`>`,forbid,c) union map(`+`,ds,c);
    od:
    convert(A,list)
    end proc:
    Noap(100, 8); # Robert Israel, Jan 04 2016

A020661 Lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 9.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 52, 54, 55, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 69, 70, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 90, 91, 93, 94, 95, 96, 97
Offset: 1

Views

Author

Keywords

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

A020662 Lexicographically earliest increasing sequence of positive numbers that contains no arithmetic progression of length 9.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 53, 55, 56, 57, 58, 59, 60, 64, 65, 66, 67, 68, 69, 70, 71, 78, 79, 80, 81, 82, 83, 84, 85, 87, 88, 91, 92, 94, 95, 96, 97
Offset: 1

Views

Author

Keywords

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • Maple
    Noap:= proc(N,m)
    # N terms of earliest increasing seq with no m-term arithmetic progression
    local A,forbid,n,c,ds,j;
    A:= Vector(N):
    A[1..m-1]:= <($1..m-1)>:
    forbid:= {m}:
    for n from m to N do
      c:= min({$A[n-1]+1..max(max(forbid)+1, A[n-1]+1)} minus forbid);
      A[n]:= c;
      ds:= convert(map(t -> c-t, A[m-2..n-1]),set);
      for j from m-2 to 2 by -1 do
        ds:= ds intersect convert(map(t -> (c-t)/j, A[m-j-1..n-j]),set);
        if ds = {} then break fi;
      od;
      forbid:= select(`>`,forbid,c) union map(`+`,ds,c);
    od:
    convert(A,list)
    end proc:
    Noap(100,9); # Robert Israel, Jan 04 2016

A020663 Lexicographically earliest increasing sequence of nonnegative numbers that contains no arithmetic progression of length 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 80, 81, 82, 83, 84, 87, 88, 95, 96
Offset: 1

Views

Author

Keywords

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

A005839 Lexicographically earliest increasing nonnegative sequence that contains no 4-term arithmetic progression.

Original entry on oeis.org

0, 1, 2, 4, 5, 7, 8, 9, 14, 15, 16, 18, 25, 26, 28, 29, 30, 33, 36, 48, 49, 50, 52, 53, 55, 56, 57, 62, 64, 65, 66, 79, 86, 87, 88, 90, 93, 98, 101, 104, 105, 108, 109, 110, 121, 125, 135, 144, 148, 150, 151, 159, 162, 166, 168, 169, 170, 173, 175, 176, 182
Offset: 1

Views

Author

Keywords

Comments

a(n) = A005837(n) - 1. - Alois P. Heinz, Jan 31 2014

References

  • R. K. Guy, Unsolved Problems in Number Theory, E10.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).

Programs

  • Mathematica
    t = {0, 1, 2}; Do[s = Table[Append[i, n], {i, Subsets[t, {3}]}];
    If[! MemberQ[Table[Differences[i, 2], {i, s}], {0, 0}], AppendTo[t, n]], {n, 3, 200}]; t (* T. D. Noe, Apr 17 2014 *)

Extensions

More terms from Jeffrey Shallit, Aug 15 1995.
Edited (with new offset, etc.) by N. J. A. Sloane, Jan 04 2016

A240075 Lexicographically earliest nonnegative increasing sequence such that no four terms have constant second differences.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 15, 16, 17, 20, 44, 51, 52, 53, 56, 58, 64, 78, 166, 167, 192, 195, 196, 200, 202, 203, 206, 217, 226, 248, 249, 276, 312, 649, 657, 678, 681, 682, 715, 726, 740, 743, 747, 750, 771, 790, 830, 833, 836, 838, 842, 854, 875, 908, 911, 971
Offset: 1

Views

Author

T. D. Noe, Apr 09 2014

Keywords

Crossrefs

For the positive sequence, see A240555, which is this sequence plus 1.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
For the analog sequence which avoids 5-term subsequences of constant third differences, see A240556 (>=0) and A240557 (>0).

Programs

  • Mathematica
    t = {0, 1, 2}; Do[s = Table[Append[i, n], {i, Subsets[t, {3}]}]; If[! MemberQ[Flatten[Table[Differences[i, 3], {i, s}]], 0], AppendTo[t, n]], {n, 3, 1000}]; t
  • PARI
    A240075(n, show=0, L=4, o=2, v=[0], D=v->v[2..-1]-v[1..-2])={ my(d, m); while( #v1, ); #Set(d)>1||next(2), 2); break)); v[#v]} \\ M. F. Hasler, Jan 12 2016

Extensions

Definition corrected by N. J. A. Sloane and M. F. Hasler, Jan 04 2016.

A240555 Lexicographically earliest positive increasing sequence such that no four terms have constant second differences.

Original entry on oeis.org

1, 2, 3, 5, 6, 9, 16, 17, 18, 21, 45, 52, 53, 54, 57, 59, 65, 79, 167, 168, 193, 196, 197, 201, 203, 204, 207, 218, 227, 249, 250, 277, 313, 650, 658, 679, 682, 683, 716, 727, 741, 744, 748, 751, 772, 791, 831, 834, 837, 839, 843, 855, 876, 909, 912, 972
Offset: 1

Views

Author

T. D. Noe, Apr 09 2014

Keywords

Comments

If "positive" is changed to "nonnegative" we get A240075, which is this sequence minus 1.
See A005837 for the earliest sequence containing no 4-term arithmetic progression.

Examples

			After 1,2,3 the number 4 is excluded since (1,2,3,4) has zero second and third differences.
After 1,2,3,5 the number 8 is excluded since (2,3,5,8) has second differences 1,1.
		

Crossrefs

Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
Cf. A240075 (nonnegative version, a(n)-1).
Cf. A240556 and A240557 for sequences avoiding 5-term subsequences with constant third differences.

Programs

  • Mathematica
    t = {1, 2, 3}; Do[s = Table[Append[i, n], {i, Subsets[t, {3}]}]; If[! MemberQ[Flatten[Table[Differences[i, 3], {i, s}]], 0], AppendTo[t, n]], {n, 4, 1000}]; t
  • PARI
    A240555(n, show=0, L=4, o=2, v=[1], D=v->v[2..-1]-v[1..-2])={ my(d, m); while( #v1, ); #Set(d)>1||next(2), 2); break)); v[#v]} \\ M. F. Hasler, Jan 12 2016

Extensions

Definition corrected by N. J. A. Sloane, Jan 04 2016 and M. F. Hasler at the suggestion of Lewis Chen

A322286 Lexicographically earliest sequence of positive integers without 4 terms in a weakly increasing arithmetic progression.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 3, 3, 3, 1, 1, 3, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 3, 2, 3, 3, 5, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 2, 3, 4, 2, 3, 2, 2, 2, 3, 3, 1, 3, 3, 3, 5, 5, 4, 1, 1, 1, 3, 1, 2, 3, 1, 5, 3, 2, 6, 1, 3, 2, 1, 3, 2, 1, 1, 3, 3, 1, 1, 1
Offset: 1

Views

Author

Sébastien Palcoux, Aug 28 2019

Keywords

Comments

This is a variation of A248641 (where we only exclude weakly increasing arithmetic progressions): they differ from the 101st term.
It is also a variation of A309890 where 3-term is replaced by 4-term.
The numbers n for which the n-th term is 1 are given by A005837.
There is no upper bound, because if there were an upper bound r then there must be s <= r such that the set of numbers n for which the n-th term is s has positive density and this contradicts Szemerédi's theorem.
Assuming Erdős's conjecture on arithmetic progressions, for a fixed positive integer r, the sum of the reciprocals of the numbers n for which the n-th term is r converges.

Crossrefs

Programs

  • SageMath
    cpdef FourFree(int n):
       cdef int i,r,k,s,L1,L2,L3
       cdef list L,Lb
       cdef set b
       L=[1,1,1]
       for k in range(3,n):
          b=set()
          for i in range(k):
             if 3*((k-i)/3)==k-i:
                r=(k-i)/3
                L1,L2,L3=L[i],L[i+r],L[i+2*r]
                s=3*(L2-L1)+L1
                if s>0 and L3==2*(L2-L1)+L1:
                   if L1<=L2:
                      b.add(s)
          if 1 not in b:
             L.append(1)
          else:
             Lb=list(b)
             Lb.sort()
             for t in Lb:
                if t+1 not in b:
                   L.append(t+1)
                   break
       return L
Previous Showing 11-18 of 18 results.