cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 84 results. Next

A294577 Numbers that are the sum of three squares (square 0 allowed) in exactly four ways.

Original entry on oeis.org

81, 89, 101, 125, 129, 134, 149, 161, 162, 170, 171, 173, 189, 198, 201, 233, 241, 242, 243, 245, 246, 249, 250, 251, 254, 270, 274, 278, 285, 289, 294, 299, 324, 339, 349, 356, 361, 363, 370, 371, 378, 387, 390, 393, 395, 404, 406, 411, 417, 429, 433, 451
Offset: 1

Views

Author

Robert Price, Nov 02 2017

Keywords

Comments

These are the numbers for which A000164(a(n)) = 4.
a(n) is the n-th largest number which has a representation as a sum of three integer squares (square 0 allowed), in exactly four ways, if neither the order of terms nor the signs of the numbers to be squared are taken into account. The multiplicity of a(n) with order and signs taken into account is A005875(a(n)).
This sequence is a proper subsequence of A000378.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 1000], Length[PowersRepresentations[#, 3, 2]] == 4 &]

Extensions

Updated Mathematica program to Version 11. by Robert Price, Nov 01 2019

A342561 List points (x,y,z) having integer coordinates, sorted first by R^2 = x^2 + y^2 + z^2 and in case of ties, then by z and last by polar angle 0 <= phi < 2*Pi in a polar coordinate system. Sequence gives x-coordinates.

Original entry on oeis.org

0, 0, 1, 0, -1, 0, 0, 1, 0, -1, 0, 1, -1, -1, 1, 1, 0, -1, 0, 1, -1, -1, 1, 1, -1, -1, 1, 0, 2, 0, -2, 0, 0, 1, 0, -1, 0, 2, 0, -2, 0, 2, 1, -1, -2, -2, -1, 1, 2, 2, 0, -2, 0, 1, 0, -1, 0, 1, -1, -1, 1, 2, 1, -1, -2, -2, -1, 1, 2, 2, 1, -1, -2, -2, -1, 1, 2, 1, -1, -1, 1, 2, 0, -2, 0, 2, -2, -2, 2, 2, 0, -2, 0
Offset: 0

Views

Author

Hugo Pfoertner, Apr 27 2021

Keywords

Comments

This is a 3-dimensional generalization of A305575 and A305576.
y-coordinates are in A342562, z-coordinates are in A342563.
These lists can be read as an irregular table, where row r lists the respective coordinates of the points on the sphere with radius R = sqrt(r); their number (i.e., the row length) is given by A005875 = (1, 6, 12, 8, 6, 24, 24, 0, 12, 30, ...). - M. F. Hasler, Apr 27 2021

Examples

			   n    x    y    z  R^2  phi/Pi
   0    0    0    0   0   0.000
   1    0    0   -1   1   0.000
   2    1    0    0   1   0.000
   3    0    1    0   1   0.500
   4   -1    0    0   1   1.000
   5    0   -1    0   1   1.500
   6    0    0    1   1   0.000
   7    1    0   -1   2   0.000
   8    0    1   -1   2   0.500
   9   -1    0   -1   2   1.000
  10    0   -1   -1   2   1.500
  11    1    1    0   2   0.250
  12   -1    1    0   2   0.750
  13   -1   -1    0   2   1.250
  14    1   -1    0   2   1.750
  15    1    0    1   2   0.000
  16    0    1    1   2   0.500
  17   -1    0    1   2   1.000
  18    0   -1    1   2   1.500
  19    1    1   -1   3   0.250
  20   -1    1   -1   3   0.750
  21   -1   -1   -1   3   1.250
  22    1   -1   -1   3   1.750
  23    1    1    1   3   0.250
  24   -1    1    1   3   0.750
  25   -1   -1    1   3   1.250
  26    1   -1    1   3   1.750
  27    0    0   -2   4   0.000
  28    2    0    0   4   0.000
  29    0    2    0   4   0.500
		

Crossrefs

Cf. A343630, A340631, A340632, A343633 for a variant which "connects" corresponding poles of successive shells, A343640, A340641, A340642, A343643 for a square spiral variant.

Programs

  • PARI
    shell(n, Q=Qfb(1,0,1), L=List())={for(z=if(n, sqrtint((n-1)\3)+1), sqrtint(n), my(S=if(n>z^2, Set(apply(vecsort, abs(qfbsolve(Q, n-z^2, 3)))), [[0,0]])); foreach(S, s, forperm(concat(s,z), p, listput(L, p)))); for(i=1,3, for(j=1,#L, my(X=L[j]); (X[i]*=-1) && listput(L,X))); vecsort(L, (p,q)->if( p[3]!=q[3], p[3]-q[3], p[1]==q[1], q[2]-p[2], p[2]*q[2]<0, q[2]-p[2], (q[1]-p[1])*(p[2]+q[2])))} \\ Gives list of all points with Euclidean norm sqrt(n).
    A342561_vec=concat([[P[1] | P <- shell(n)] | n<-[0..7]]) \\ M. F. Hasler, Apr 27 2021

A343633 Z-coordinate of the points following the 3D spiral defined in A343630.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, -2, -2, -2, -2, -3, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, 0
Offset: 0

Views

Author

M. F. Hasler, Apr 28 2021

Keywords

Comments

See the main entry A343630 for details about this 3D generalization of an Ulam type spiral using the Euclidean norm.
Sequences A343631 and A343632 give the x and y-coordinates.
The sequence can be seen as a table with row lengths A005875, where A005875(r) is the number of points at distance sqrt(r) from the origin.
Sequence A343643 is the analog for the square spiral variant A343640.

Crossrefs

Cf. A343631, A343633 (list of x and z-coordinates).
Cf. A343643 (variant using the sup norm => square spiral).
Cf. A342563 (variant which scans each sphere by increasing z).
Cf. A005875 (number of points on a shell with given radius).
Cf. A004215 (numbers that can't be written as sum of 3 squares => empty shells).

Programs

  • PARI
    d=1; A343633_vec=concat([[P[3] | P<-S=A343630_row(n,d)]+(#S&&!d*=-1) | n<-[0..9]]) \\ the variable d is necessary to correct the z-scan direction in rows between A004215(2k-1) and A004215(2k).

A005887 Theta series of f.c.c. lattice with respect to octahedral hole.

Original entry on oeis.org

6, 8, 24, 0, 30, 24, 24, 0, 48, 24, 48, 0, 30, 32, 72, 0, 48, 48, 24, 0, 96, 24, 72, 0, 54, 48, 72, 0, 48, 72, 72, 0, 96, 24, 96, 0, 48, 56, 96, 0, 102, 72, 48, 0, 144, 48, 48, 0, 48, 72, 168, 0, 96, 72, 72, 0, 96, 48, 120, 0, 78, 48, 144, 0, 144, 120, 48, 0, 96, 72, 96, 0, 96, 56, 168
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			6 + 8*x + 24*x^2 + 30*x^4 + 24*x^5 + 24*x^6 + 48*x^8 + 24*x^9 + 48*x^
10 + ...
6*q + 8*q^3 + 24*q^5 + 30*q^9 + 24*q^11 + 24*q^13 + 48*q^17 + 24*q^19 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005875.

Programs

  • Maple
    maxd:=20001: read format: temp0:=trunc(evalf(sqrt(maxd)))+2: a:=0: for i from -temp0 to temp0 do a:=a+q^( (i+1/2)^2): od: th2:=series(a,q,maxd): a:=0: for i from -temp0 to temp0 do a:=a+q^(i^2): od: th3:=series(a,q,maxd): th4:=series(subs(q=-q,th3),q,maxd):
    t1:=series((th3^3-th4^3)/(2*q),q,maxd): t1:=series(subs(q=sqrt(q),t1),q,floor(maxd/2)): t2:=seriestolist(t1): for n from 1 to nops(t2) do lprint(n-1, t2[n]); od:
  • Mathematica
    s = (EllipticTheta[3, 0, q]^3 - EllipticTheta[3, 0, -q]^3)/(2q) + O[q]^200; CoefficientList[s, q^2] (* Jean-François Alcover, Sep 19 2016 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1 + x*O(x^n))^3, n))} /* Michael Somos, Aug 17 2009 */

Formula

Expansion of q^(-1) * (phi^3(q) - phi^3(-q)) / 2 in powers of q^2 where phi() is a Ramanujan theta function. - Michael Somos, Aug 17 2009
A005875(2*n + 1) = a(n). - Michael Somos, Aug 17 2009

A045826 a(n) = A005887(n) / 2.

Original entry on oeis.org

3, 4, 12, 0, 15, 12, 12, 0, 24, 12, 24, 0, 15, 16, 36, 0, 24, 24, 12, 0, 48, 12, 36, 0, 27, 24, 36, 0, 24, 36, 36, 0, 48, 12, 48, 0, 24, 28, 48, 0, 51, 36, 24, 0, 72, 24, 24, 0, 24, 36, 84, 0, 48, 36
Offset: 0

Views

Author

Keywords

Examples

			3 + 4*x + 12*x^2 + 15*x^4 + 12*x^5 + 12*x^6 + 24*x^8 + 12*x^9 + ...
3*q + 4*q^3 + 12*q^5 + 15*q^9 + 12*q^11 + 12*q^13 + 24*q^17 + 12*q^19 + ...
		

Crossrefs

Programs

  • Mathematica
    A005887[n_]:= SeriesCoefficient[(EllipticTheta[3,0,q]^3 - EllipticTheta[3,0,-q]^3)/(2 q), {q, 0, n}];  Table[A005887[n]/2, {n,0, 50}][[1;; ;; 2]] (* G. C. Greubel, Feb 09 2018 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1; polcoeff( sum( k=1, sqrtint(n), 2 * x^k^2, 1 + x*O(x^n))^3 / 2, n))} /* Michael Somos, Mar 12 2011 */

Formula

Expansion of q^(-1) * (phi^3(q) - phi^3(-q)) / 4 in powers of q^2 where phi() is a Ramanujan theta function. - Michael Somos, Mar 12 2011
A005875(2*n + 1) = 2 * a(n). - Michael Somos, Mar 12 2011

A276285 Number of ways of writing n as a sum of 13 squares.

Original entry on oeis.org

1, 26, 312, 2288, 11466, 41808, 116688, 265408, 535704, 1031914, 1899664, 3214224, 5043376, 7801744, 12066912, 17689152, 24443978, 34039200, 48210760, 64966096, 83323344, 109157152, 145532816, 185245632, 227110416, 284788010, 363737712
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 27 2016

Keywords

Comments

More generally, the ordinary generating function for the number of ways of writing n as a sum of k squares is theta_3(0, q)^k = 1 + 2*k*q + 2*(k - 1)*k*q^2 + (4/3)*(k - 2)*(k - 1)*k*q^3 + (2/3)*((k - 3)*(k - 2)*(k - 1) + 3)*k*q^4 + (4/15) *(k - 1)*k*(k^3 - 9*k^2 + 26*k - 9)*q^5 + ..., where theta is the Jacobi theta functions.

Crossrefs

13th column of A286815. - Seiichi Manyama, May 27 2017
Row d=13 of A122141.
Cf. Number of ways of writing n as a sum of k squares: A004018 (k = 2), A005875 (k = 3), A000118 (k = 4), A000132 (k = 5), A000141 (k = 6), A008451 (k = 7), A000143 (k = 8), A008452 (k = 9), A000144 (k = 10), A008453 (k = 11), A000145 (k = 12), this sequence (k = 13), A000152 (k = 16).

Programs

  • Mathematica
    Table[SquaresR[13, n], {n, 0, 26}]

Formula

G.f.: theta_3(0,q)^13, where theta_3(x,q) is the third Jacobi theta function.
a(n) = (26/n)*Sum_{k=1..n} A186690(k)*a(n-k), a(0) = 1. - Seiichi Manyama, May 27 2017

A294594 Numbers that are the sum of three squares (square 0 allowed) in exactly five ways.

Original entry on oeis.org

146, 153, 185, 206, 221, 225, 230, 234, 257, 261, 266, 293, 305, 325, 338, 350, 353, 354, 362, 377, 381, 398, 402, 405, 409, 410, 413, 414, 419, 437, 470, 474, 477, 481, 491, 514, 525, 539, 557, 563, 579, 582, 584, 586, 590, 611, 612, 625, 630, 635, 638, 642
Offset: 1

Views

Author

Robert Price, Nov 03 2017

Keywords

Comments

These are the numbers for which A000164(a(n)) = 5.
a(n) is the n-th largest number which has a representation as a sum of three integer squares (square 0 allowed), in exactly five ways, if neither the order of terms nor the signs of the numbers to be squared are taken into account. The multiplicity of a(n) with order and signs taken into account is A005875(a(n)).
This sequence is a proper subsequence of A000378.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 1000], Length[PowersRepresentations[#, 3, 2]] == 5 &]

Extensions

Updated Mathematica program to Version 11. by Robert Price, Nov 01 2019

A343630 Coordinate triples (x(n), y(n), z(n); n >= 0) of the 3D spiral filling space with shells of increasing radius, using circles at fixed z-values which alternatingly move up and down as do the x-values.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 1, 0, -1, 0, 1, -1, -1, 0, -1, 0, -1, -1, 1, 1, 0, -1, 1, 0, -1, -1, 0, 1, -1, 0, 1, 0, 1, 0, 1, 1, -1, 0, 1, 0, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 0, 0, -2, 2, 0, 0, 0, 2, 0, -2, 0, 0, 0, -2, 0, 0, 0
Offset: 0

Views

Author

M. F. Hasler, Apr 28 2021

Keywords

Comments

This is a 3D generalization of a plane filling spiral using the Euclidean norm.
See A343640 for an analog using the sup- or oo-norm, where circles are squares and spheres are cubes.
The integer lattice points, Z^3, are listed in order of increasing Euclidean distance R^2 = x^2 + y^2 + z^2 from the origin. Each shell of given radius is filled using circles located at given latitude (i.e., z-value) on the sphere, and each circle is filled by points with increasing longitude, where the positive x axis corresponds to longitude 0. The latitudes / z-values are alternately increasing and decreasing (so over a period of two shells they follow the same cosine-type shape as the x-values do over the period of each circle).
The sequence can be seen as a table with row length of 3, where each row corresponds to the (x,y,z)-coordinates of one point (the three columns are then A343631, A343632 and A343633), or as a table with row lengths 3*A005875, where A005875(r) is the number of points at distance sqrt(r) from the origin.
Sequence A343640 gives a square spiral variant.

Examples

			Shell r = 0 is the origin, {(0,0,0)}.
Shell r = 1 contains the 6 points {(0,0,1), (1,0,0), (0,1,0), (-1,0,0), (0,-1,0), (0,0,-1)}, located on the North pole, equator and South pole of the unit sphere. The equator (as all circles in the sequel) is "scanned" by increasing longitude = polar coordinate phi in the (x,y) plane with given z, where (x,y,z) = (R,0,0) has longitude 0.
Shell r = R^2 = 2 contains the 12 points (now in order of increasing z-coordinate) {(1,0,-1), (0,1,-1), (-1,0,-1), (0,-1,-1); (1,1,0), (-1,1,0), (-1,-1,0), (1,-1,0); (1,0,1), (0,1,1), (-1,0,1), (0,-1,1)}.
Then again, the points of shell r = R^2 = 3 are ordered by decreasing z-coordinate.
There are no points in shell r = R^2 = 7 = A004215(1), so from there on up to the next empty shell, the shells with even r are filled by decreasing z-coordinate.
		

Crossrefs

Cf. A343631, A343632, A343633 (list of x, y resp. z-coordinates only).
Cf. A343640, A343641, A343642, A343643 (variant using the sup norm => square spiral).
Cf. A342561, A342562, A342563 for a variant which scans each sphere by increasing z.
Cf. A005875 (number of points on a shell with given radius).
Cf. A004215 (numbers that can't be written as sum of 3 squares => empty shells).

Programs

  • PARI
    A343630_row(n, dir=(-1)^n, Q=Qfb(1, 0, 1), L=List())={for(z=if(n, sqrtint((n-1)\3)+1), sqrtint(n), my(S=if(n>z^2, Set(apply(vecsort, abs(qfbsolve(Q, n-z^2, 3)))), [[0, 0]])); foreach(S, s, forperm(concat(s, z), p, listput(L, p)))); for(i=1, 3, for(j=1, #L, my(X=L[j]); (X[i]*=-1) && listput(L, X))); vecsort(L, (p, q)->if( p[3]!=q[3], (p[3]-q[3])*dir, p[1]==q[1], q[2]-p[2], p[2]*q[2]<0, q[2]-p[2], (q[1]-p[1])*(p[2]+q[2])))} \\ returns row n of the table, i.e., the list of points (x,y,z) in Z^3 with Euclidean norm equal to sqrt(n), sorted by increasing latitude for dir = +1, else decreasing, and increasing longitude.
    A343630_vec=concat([[Vec(P) | P<-A343630_row(n)] | n<-[0..6]]) \\ beyond the empty row 7 one must correct the second argument, e.g. by using {... P<-S=A343630_row(n,d)]+(#S&&!d*=-1) ...} to flip the sign of d, initialized to 1, at each nonempty shell.

A033717 Number of integer solutions to the equation x^2 + 2*y^2 + 4*z^2 = n.

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 8, 8, 6, 6, 8, 4, 8, 12, 0, 8, 12, 8, 10, 12, 8, 8, 24, 8, 8, 14, 8, 16, 16, 4, 0, 16, 6, 16, 16, 8, 12, 20, 24, 8, 24, 8, 16, 20, 8, 20, 0, 16, 24, 18, 10, 8, 24, 12, 32, 24, 0, 16, 24, 12, 16, 20, 0, 24, 12, 8, 16, 28, 16, 16, 48, 8, 30, 32, 8, 20, 24, 16, 0, 16, 24, 18
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 2*q^2 + 4*q^3 + 4*q^4 + 4*q^5 + 8*q^6 + 8*q^7 + 6*q^8 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p 102 eq 9.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(16), 3/2), 82); A[1] + 2*A[2] + 2*A[3] + 4*A[4] + 4*A[5] + 4*A[6] + 8*A[7] + 8*A[8] + 6*A[9] + 8*A[10] + 4*A[11]; /* Michael Somos, Sep 03 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] EllipticTheta[ 3, 0, q^4], {q, 0, n}]; (* Michael Somos, Sep 03 2014 *)
  • PARI
    {a(n) = my(G); if( n<0, 0, G = [1, 0, 0; 0, 2, 0; 0, 0, 4]; polcoeff( 1 + 2 * x * Ser(qfrep( G, n)), n))}; /* Michael Somos, Sep 03 2014 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^4 + A) * eta(x^8 + A)^3 / (eta(x + A)^2 * eta(x^16 + A)^2), n))}; /* Michael Somos, Sep 03 2014 */
    

Formula

Expansion of phi(q) * phi(q^2) * phi(q^4) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Sep 03 2014
Euler transform of period 16 sequence [2, -1, 2, -2, 2, -1, 2, -5, 2, -1, 2, -2, 2, -1, 2, -3, ...]. - Michael Somos, Sep 03 2014
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 8 (t/i)^(3/2) f(t) where q = exp(2 Pi i t). - Michael Somos, Sep 03 2014
a(2*n + 1) = 2 * A045828(n). a(4*n) = A014455(n). a(4*n + 1) = 2 * A213625(n). a(4*n + 2) = 2 * A246811(n). a(4*n + 3) = 4 * A213624(n). - Michael Somos, Sep 03 2014
a(8*n) = A005875(n). a(8*n + 1) = 2 * A213622(n). a(8*n + 2) = 2 * A045834(n). a(8*n + 7) = 8 * A033763(n). - Michael Somos, Sep 03 2014
a(16*n) = A004015(n). a(16*n + 2) = 2 * A213022(n). a(16*n + 6) = 8 *
A008443(n). a(16*n + 8) = 2 * A045826(n). a(16*n + 10) = 8 * A045831(n). a(16*n + 14) = 0. - Michael Somos, Sep 03 2014
G.f.: theta_3(q) * theta_3(q^2) * theta_3(q^4).

A071342 a(n) = the maximum number of lattice points touched by an origin-centered sphere with radius <= n.

Original entry on oeis.org

6, 12, 30, 48, 48, 72, 96, 96, 120, 144, 168, 168, 192, 240, 240, 240, 264, 312, 336, 336, 336, 384, 384, 384, 408, 432, 480, 480, 504, 528, 552, 552, 552, 672, 672, 696, 720, 720, 720, 720, 768, 768, 816, 864, 864, 864, 936, 936, 936, 936, 936, 1008, 1008
Offset: 1

Views

Author

Hugo Pfoertner, May 22 2002

Keywords

Examples

			a(4 to 5)=48 because the sphere with radius sqrt(14) touches 48 lattice points; but no sphere touches more, until the radius is sqrt(26).
		

Crossrefs

Programs

Formula

a(n) = max(i=0 to n^2) A005875(i)

Extensions

Edited by Don Reble, Nov 06 2005
Previous Showing 31-40 of 84 results. Next