cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 505 results. Next

A292583 Restricted growth sequence transform of A278222(A292383(n)); a filter related to runs of numbers of the form 4k+3 encountered on trajectories of A005940-tree.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 1, 2, 4, 2, 4, 3, 3, 1, 4, 1, 5, 2, 2, 4, 6, 2, 1, 4, 2, 3, 6, 3, 7, 1, 3, 4, 4, 1, 7, 5, 5, 2, 7, 2, 8, 4, 2, 6, 9, 2, 1, 1, 5, 4, 9, 2, 3, 3, 4, 6, 10, 3, 10, 7, 3, 1, 3, 3, 11, 4, 5, 4, 12, 1, 12, 7, 2, 5, 4, 5, 13, 2, 1, 7, 14, 2, 5, 8, 7, 4, 14, 2, 4, 6, 6, 9, 6, 2, 14, 1, 15, 1, 14, 5, 16, 4, 3
Offset: 1

Views

Author

Antti Karttunen, Sep 20 2017

Keywords

Comments

Term a(n) essentially records the run lengths of numbers of form 4k+3 encountered when starting from that node in binary tree A005940 which contains n, and by then traversing towards the root by iterating the map n -> A252463(n). The actual run lengths can be read from the exponents of primes in the prime factorization of A278222(A292383(m)), where m = min_{k=1..n} for which a(k) = a(n). In compound filter A292584 this is combined with similar information about the run lengths of the numbers of the form 4k+1 (A292585).
From Antti Karttunen, Sep 25 2017: (Start)
For all i, j: a(i) = a(j) => A053866(i) = A053866(j).
This follows from the interpretation of A053866 (A093709) as the characteristic function of squares and twice-squares. In binary tree A005940 each number is "born" by repeated applications of two functions: when we descend leftward we apply A003961, which shifts all prime factors of n one step towards larger primes. On the other hand, when we descend rightward the terms grow by doubling: n -> 2n (A005843). No square is ever of the form 4k+3, and for any square x, A003961(x) is also a square. Multiplying a square by 2 gives twice a square, and then multiplying by 2 again gives 4*square, which is also a square. In general, applying an even number of doubling steps in succession keeps a square as a square, while an odd number of doubling steps gives twice a square. Applying A003961 to any 2*square gives 3*(some square) which is always of the form 4k+3. Moreover, after any such "wrong turn" in A005940-tree no square nor twice a square can ever be encountered under any of the further descendants, because with this process it is impossible to find a pair for the lone prime factor now present. On the other hand, when turning left from any (2^2k)*s (where s is a square), one again gets a square of the form (3^2k)*A003961(s). All this implies that there are no numbers of the form 4k+3 in any trajectory leading to a square or twice a square in A005940-tree, while all trajectories to any other kind of number contain at least one number of the form 4k+3. Because each a(n) in this sequence contains enough information to count the 4k+3 numbers encountered on a A005940-trajectory to n (being 1 iff there are none), this filter matches A053866.
(End)

Examples

			When traversing from the root of binary tree A005940 from the node containing 7, one obtains path 7 -> 5 -> 3 -> 2 -> 1. Of these numbers, 7 and 3 are of the form 4k+3, while others are not, thus there are two separate runs of length 1: [1, 1]. On the other hand, when traversing from 15 as 15 -> 6 -> 3 -> 2 -> 1, again only two terms are of the form 4k+3: 15 and 3 and they are not next to each other, so we have the same two runs of one each: [1, 1], thus a(7) and a(15) are allotted the same value by the restricted growth sequence transform, which in this case is 3. Note that 3 occurs in this sequence for the first time at n=7, with A292383(7) = 5 and A278222(5) = 6 = 2^1 * 3^1, where those run lengths 1 and 1 are the prime exponents of 6.
		

Crossrefs

Programs

  • PARI
    allocatemem(2^30);
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A278222(n) = A046523(A005940(1+n));
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A292383(n) = if(1==n,0,(if(3==(n%4),1,0)+(2*A292383(A252463(n)))));
    write_to_bfile(1,rgs_transform(vector(16384,n,A278222(A292383(n)))),"b292583_upto16384.txt");

A252738 Row products of irregular table A005940: a(0) = 1; a(1) = 2; for n > 1: 2^(2^(n-2)) * a(n-1) * A003961(a(n-1)); also row products of A163511, A253563, A253565, and A332977.

Original entry on oeis.org

1, 2, 12, 2160, 2449440000, 8488905214204800000000000, 3025568387202006082882734693673523654400000000000000000000000000
Offset: 0

Views

Author

Antti Karttunen, Dec 21 2014

Keywords

Examples

			From _Michael De Vlieger_, Jul 21 2023: (Start)
a(0) = 1 = product of {1},
a(1) = 2^1 = product of {2},
a(2) = 2^2 * 3^1 = product of {3, 2^2},
a(3) = 2^4 * 3^3 * 5^1 = product of {5, 2^1*3^1, 3^2, 2^3},
a(4) = 2^8 * 3^7 * 5^4 * 7^1 = product of
  {7, 2^1*5^1, 3^1*5^1, 2^2*3^1, 5^2, 2^1*3^2, 3^3, 2^4},
...
Table of e(n,k) where a(n) = Product_{k=1..n+1} prime(k)^e(n,k):
prime(k)|    2    3    5   7  11  13  17  19 23 29 31 ...
   n\k  |    1    2    3   4   5   6   7   8  9 10 11 ...
   ----------------------------------------------------
    0   |    1
    1   |    2    1
    2   |    4    3    1
    3   |    8    7    4   1
    4   |   16   15   11   5   1
    5   |   32   31   26  16   6   1
    6   |   64   63   57  42  22   7   1
    7   |  128  127  120  99  64  29   8   1
    8   |  256  255  247 219 163  93  37   9  1
    9   |  512  511  502 466 382 256 130  46 10  1
   10   | 1024 1023 1013 968 848 638 386 176 56 11  1
  ... (End)
		

Crossrefs

These are row products of irregular tables A005940, A163511, A253563 and A253565, which all are shaped like a binary tree.
Partial products of A252740.
Cf. A252737 (row sums), A252739 (divided by n), A252741 (divided by n!).

Programs

  • Mathematica
    Table[Times @@ Array[Prime[# + 1]^Sum[Binomial[n, # + j], {j, 0, n}] &, n + 1, 0], {n, 0, 5}] (* Michael De Vlieger, Jul 21 2023 *)
  • PARI
    allocatemem(234567890);
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
    A252738print(up_to_n) = { my(s, i=0, n=0); for(n=0, up_to_n, if(0 == n, s = 1, if(1 == n, s = 2; lev = vector(1); lev[1] = 2, oldlev = lev; lev = vector(2*length(oldlev)); s = 1; for(i = 0, (2^(n-1))-1, lev[i+1] = if((i%2),A003961(oldlev[(i\2)+1]),2*oldlev[(i\2)+1]); s *= lev[i+1]))); write("b252738.txt", n, " ", s)); }; \\ Counts them empirically.
    A252738print(7);
    
  • Scheme
    (definec (A252738rec n) (if (<= n 1) (+ 1 n) (* (A000079 (A000079 (- n 2))) (A252738rec (- n 1)) (A003961 (A252738rec (- n 1)))))) ;; Implements the given recurrence; uses the memoizing definec-macro.
    (define (A252738 n) (if (zero? n) 1 (mul A163511 (A000079 (- n 1)) (A000225 n))))
    (define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i)))))))
    ;; Another alternative, implementing the new recurrence:
    (definec (A252738 n) (if (<= n 1) (+ 1 n) (* (A267096 (- n 2)) (A000290 (A252738 (- n 1)))))) ;; Antti Karttunen, Feb 06 2016

Formula

a(0) = 1; a(1) = 2; for n > 1: a(n) = 2^(2^(n-2)) * a(n-1) * A003961(a(n-1)).
a(0) = 1; for n>=1: a(n) = Product_{k=A000079(n-1) .. A000225(n)} A163511(k) = Product_{k=2^(n-1) .. (2^n)-1} A163511(k).
a(0) = 1; a(1) = 2; for n > 1: a(n) = A267096(n-2) * a(n-1)^2. [Compare to the formulas of A191555] - Antti Karttunen, Feb 06 2016
From Michael De Vlieger, Jul 21 2023: (Start)
a(n) = Product_{k=1..n+1} prime(k)^e(n,k), where e(n,k) = k-th term in row n of A055248.
A067255(a(n)) = row n of A055248. (End)

Extensions

Typos in the second formula corrected by Antti Karttunen, Feb 06 2016

A324058 a(n) = A324121(A005940(1+n)) = gcd(A324054(n), A005940(1+n)*A106737(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 12, 1, 1, 2, 2, 12, 4, 1, 3, 4, 1, 2, 8, 4, 6, 4, 24, 6, 12, 3, 3, 2, 1, 4, 24, 1, 3, 2, 4, 12, 56, 4, 48, 2, 10, 4, 16, 24, 24, 2, 18, 120, 4, 1, 3, 6, 1, 6, 12, 1, 3, 4, 4, 24, 8, 1, 3, 2, 1, 2, 2, 4, 12, 4, 48, 6, 8, 28, 8, 24, 112, 6, 24, 8, 2, 4, 16, 24, 336, 8, 96, 12, 120, 6, 24, 4, 6, 8, 720, 6, 36, 3, 3, 2, 21, 6, 36, 3, 15, 14, 6
Offset: 0

Views

Author

Antti Karttunen, Feb 15 2019

Keywords

Crossrefs

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A106737(n) = sum(k=0, n, (binomial(n+k, n-k)*binomial(n, k)) % 2);
    A324054(n) = { my(p=2,mp=p*p,m=1); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, if(3==(n%4),mp *= p,m *= (mp-1)/(p-1))); n>>=1); (m); };
    A324058(n) = gcd(A324054(n), A005940(1+n)*A106737(n));
    \\ Alternatively as:
    A324121(n) = gcd(sigma(n),n*numdiv(n));
    A324058(n) = A324121(A005940(1+n));

Formula

a(n) = A324121(A005940(1+n)) = gcd(A324054(n), A005940(1+n)*A106737(n)).

A324106 Multiplicative with a(p^e) = A005940(p^e).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 25, 18, 15, 16, 11, 14, 21, 20, 27, 30, 45, 24, 49, 50, 75, 36, 125, 30, 81, 32, 45, 22, 45, 28, 55, 42, 75, 40, 77, 54, 105, 60, 35, 90, 135, 48, 121, 98, 33, 100, 245, 150, 75, 72, 63, 250, 375, 60, 625, 162, 63, 64, 125, 90, 39, 44, 135, 90, 99, 56, 91, 110, 147, 84, 135, 150, 189, 80, 143, 154, 231, 108, 55
Offset: 1

Views

Author

Antti Karttunen, Feb 15 2019

Keywords

Comments

Question: are there any other numbers n besides 1 and those in A070776, for which a(n) = A005940(n)? At least not below 2^25. This is probably easy to prove.

Examples

			For n = 85 = 5*17, a(85) = A005940(5) * A005940(17) = 5*11 = 55. Note that A005940(5) is obtained from the binary expansion of 5-1 = 4, which is "100", and A005940(17) is obtained from the binary expansion of 17-1 = 16, which is "1000".
		

Crossrefs

Cf. A005940, A070776, A324107 (fixed points), A324108, A324109.

Programs

  • Mathematica
    nn = 128; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Array[Times @@ Map[a, Power @@@ FactorInteger[#]] &, nn] (* Michael De Vlieger, Sep 18 2022 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A324106(n) = { my(f=factor(n)); prod(i=1, #f~, A005940(f[i,1]^f[i,2])); };

A341520 Square array A(n,k) = A156552(A005940(1+n)*A005940(1+k)), read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 5, 5, 3, 4, 7, 6, 7, 4, 5, 9, 11, 11, 9, 5, 6, 11, 10, 15, 10, 11, 6, 7, 13, 13, 19, 19, 13, 13, 7, 8, 15, 14, 23, 12, 23, 14, 15, 8, 9, 17, 23, 27, 21, 21, 27, 23, 17, 9, 10, 19, 18, 31, 22, 27, 22, 31, 18, 19, 10, 11, 21, 21, 35, 39, 29, 29, 39, 35, 21, 21, 11, 12, 23, 22, 39, 20, 47, 30, 47, 20, 39, 22, 23, 12
Offset: 0

Views

Author

Antti Karttunen, Feb 13 2021

Keywords

Comments

The indices run as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), etc. The array is symmetric.
This array defines a binary operation on the nonnegative integers that matches up the zeros in the binary representation of each operand (starting from the right, and including as many leading zeros as necessary) and concatenates the two (possibly null) strings of ones to the right of each matched pair of zeros. See the examples. - Peter Munn, Feb 14 2021.
As such it could be useful for implementing multiplication, say, in Turing machines, with a "tape-like" unary-binary encoding of the prime factorization of n (A156552). However, such representation is not very useful if addition or subtraction is also needed.

Examples

			The top left {0..15} X {0..16} corner of the array:
   0,  1,  2,  3,  4,  5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15,
   1,  3,  5,  7,  9, 11,  13,  15,  17,  19,  21,  23,  25,  27,  29,  31,
   2,  5,  6, 11, 10, 13,  14,  23,  18,  21,  22,  27,  26,  29,  30,  47,
   3,  7, 11, 15, 19, 23,  27,  31,  35,  39,  43,  47,  51,  55,  59,  63,
   4,  9, 10, 19, 12, 21,  22,  39,  20,  25,  26,  43,  28,  45,  46,  79,
   5, 11, 13, 23, 21, 27,  29,  47,  37,  43,  45,  55,  53,  59,  61,  95,
   6, 13, 14, 27, 22, 29,  30,  55,  38,  45,  46,  59,  54,  61,  62, 111,
   7, 15, 23, 31, 39, 47,  55,  63,  71,  79,  87,  95, 103, 111, 119, 127,
   8, 17, 18, 35, 20, 37,  38,  71,  24,  41,  42,  75,  44,  77,  78, 143,
   9, 19, 21, 39, 25, 43,  45,  79,  41,  51,  53,  87,  57,  91,  93, 159,
  10, 21, 22, 43, 26, 45,  46,  87,  42,  53,  54,  91,  58,  93,  94, 175,
  11, 23, 27, 47, 43, 55,  59,  95,  75,  87,  91, 111, 107, 119, 123, 191,
  12, 25, 26, 51, 28, 53,  54, 103,  44,  57,  58, 107,  60, 109, 110, 207,
  13, 27, 29, 55, 45, 59,  61, 111,  77,  91,  93, 119, 109, 123, 125, 223,
  14, 29, 30, 59, 46, 61,  62, 119,  78,  93,  94, 123, 110, 125, 126, 239,
  15, 31, 47, 63, 79, 95, 111, 127, 143, 159, 175, 191, 207, 223, 239, 255,
  16, 33, 34, 67, 36, 69,  70, 135,  40,  73,  74, 139,  76, 141, 142, 271,
...
From _Peter Munn_, Feb 24 2021: (Start)
We consider the case of n = 10, k = 41, following the procedure in the Feb 14 2021 comment.
First, write 10 and 41 in binary:
  10 = 1010_2
  41 = 101001_2
Add at least one leading zero to each number, equalizing number of zeros:
  0  0  1  0  1  0
  0  1  0  1  0  0  1
Align zeros, but separate ones:
  0     0  1     0  1  0
  |     |        |     |
  0  1  0     1  0     0  1
---------------------------
  0  1  0  1  1  0  1  0  1
Concatenating the ones, as shown above, we get 10110101_2 = 181.
So A(10, 41) = 181.
(End)
		

Crossrefs

Cf. A088698 (main diagonal).
Rows/columns 0-3: A001477, A005408, A341522, A004767. Row/column 7: A004771.
Cf. A341521 (the lower triangular section).

Programs

  • Mathematica
    Block[{nn = 12, a = {1}}, Do[AppendTo[a, If[EvenQ[i], Times @@ Map[Prime[PrimePi[#1] + 1]^#2 & @@ # &, FactorInteger[#]] &@ a[[(i/2) + 1]], 2 a[[((i - 1)/2) + 1]]]], {i, nn}]; Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ #]] &[a[[1 + n - k]]*a[[1 + k]] ], {n, 0, nn}, {k, n, 0, -1}]] // Flatten (* Michael De Vlieger, Feb 24 2021 *)
  • PARI
    up_to = 105;
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A341520sq(n,k) = A156552(A005940(1+n)*A005940(1+k));
    A341520list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0,oo, for(col=0,a, i++; if(i > #v, return(v)); v[i] = A341520sq(col,(a-(col))))); (v); };
    v341520 = A341520list(up_to);
    A341520(n) = v341520[1+n];

Formula

A(x, y) = A156552(A005940(1+x) * A005940(1+y)).
For all n>=0, A(0, n) = A(n, 0) = n.
For all x>=0, y>=0, A(x, y) = A(y, x).
For all x, y, z >= 0, A(x, A(y, z)) = A(A(x, y), z).
From Antti Karttunen, Feb 27 2022: (Start)
For all x, y >= 0, A(x, y) = A(A351961(x,y), A351962(x,y)).
For x >= 0, y > 0, A(x, y) = A351960(x, A(x, A297164(y))).
(End)

A348041 Square array read by antidiagonals. A(n,k) is the nearest common ancestor of n and k in the Doudna tree (A005940).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 2, 2, 3, 2, 1, 1, 2, 3, 2, 5, 2, 3, 2, 1, 1, 2, 2, 2, 3, 3, 2, 2, 2, 1, 1, 2, 2, 4, 5, 6, 5, 4, 2, 2, 1, 1, 2, 3, 4, 2, 3, 3, 2, 4, 3, 2, 1, 1, 2, 3, 2, 2, 2, 7, 2, 2, 2, 3, 2, 1, 1, 2, 3, 2, 5, 2, 2, 2, 2, 5, 2, 3, 2, 1
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Sep 27 2021

Keywords

Comments

Array is symmetric and is read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ... .
Also the nearest common ancestor of n and k in the tree depicted in A163511 (the mirror image of the Doudna tree).
The first fork in the Doudna tree separates numbers divisible by the square of their largest prime factor (on one main branch) from other numbers greater than 2 (on the other main branch). If n and m are on different main branches then A(n, m) = 2.
In more general terms A(.,.) can be considered as a binary operation that evaluates certain differences between the prime factors of its operands. To start, compare the largest prime factor of each operand with the 2nd largest prime factor. As described above, 2 is the result if these 2 factors are the same in one operand, but are different in the other operand; otherwise 3 is the result if these 2 factors are consecutive primes in one operand, but are nonconsecutive primes in the other operand. Further cases are covered in the examples, but note it is the difference between the indices of the prime numbers that is significant.

Examples

			The top left 17x17 corner of the array:
  n/k |  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17
------+-------------------------------------------------------------
    1 |  1, 1, 1, 1, 1, 1, 1, 1, 1,  1,  1,  1,  1,  1,  1,  1,  1,
    2 |  1, 2, 2, 2, 2, 2, 2, 2, 2,  2,  2,  2,  2,  2,  2,  2,  2,
    3 |  1, 2, 3, 2, 3, 3, 3, 2, 2,  3,  3,  3,  3,  3,  3,  2,  3,
    4 |  1, 2, 2, 4, 2, 2, 2, 4, 4,  2,  2,  2,  2,  2,  2,  4,  2,
    5 |  1, 2, 3, 2, 5, 3, 5, 2, 2,  5,  5,  3,  5,  5,  3,  2,  5,
    6 |  1, 2, 3, 2, 3, 6, 3, 2, 2,  3,  3,  6,  3,  3,  6,  2,  3,
    7 |  1, 2, 3, 2, 5, 3, 7, 2, 2,  5,  7,  3,  7,  7,  3,  2,  7,
    8 |  1, 2, 2, 4, 2, 2, 2, 8, 4,  2,  2,  2,  2,  2,  2,  8,  2,
    9 |  1, 2, 2, 4, 2, 2, 2, 4, 9,  2,  2,  2,  2,  2,  2,  4,  2,
   10 |  1, 2, 3, 2, 5, 3, 5, 2, 2, 10,  5,  3,  5,  5,  3,  2,  5,
   11 |  1, 2, 3, 2, 5, 3, 7, 2, 2,  5, 11,  3, 11,  7,  3,  2, 11,
   12 |  1, 2, 3, 2, 3, 6, 3, 2, 2,  3,  3, 12,  3,  3,  6,  2,  3,
   13 |  1, 2, 3, 2, 5, 3, 7, 2, 2,  5, 11,  3, 13,  7,  3,  2, 13,
   14 |  1, 2, 3, 2, 5, 3, 7, 2, 2,  5,  7,  3,  7, 14,  3,  2,  7,
   15 |  1, 2, 3, 2, 3, 6, 3, 2, 2,  3,  3,  6,  3,  3, 15,  2,  3,
   16 |  1, 2, 2, 4, 2, 2, 2, 8, 4,  2,  2,  2,  2,  2,  2, 16,  2,
   17 |  1, 2, 3, 2, 5, 3, 7, 2, 2,  5, 11,  3, 13,  7,  3,  2, 17,
.
The nearest common ancestor of 7 and 15 in the Doudna tree (see diagram in the links and A005940) is 3, thus A(7,15) = A(15,7) = 3.
The nearest common ancestor of 12 and 15 in the Doudna tree is 6, thus A(12,15) = A(15,12) = 6.
The nearest common ancestor of 4 and 27 is 4 because 27 is a descendant of 4 in the Doudna tree, thus A(4,27) = A(27,4) = 4.
Example without reference to the Doudna tree: (Start)
The method below works in general for A(.,.) considered as a binary operation, but we use A(20, 42) as our example.
(1) Write each operand as a product of primes in nondecreasing order, convert to a tuple of prime indices, decrement each index, take first differences, then reverse the order:
  20 = 2*2*5 = prime(1) * prime(1) * prime(3) -> (1,1,3) -> (0,0,2) -> (0,0,2) -> (2,0,0);
  42 = 2*3*7 = prime(1) * prime(2) * prime(4) -> (1,2,4) -> (0,1,3) -> (0,1,2) -> (2,1,0).
(2) Truncate each tuple after the first elements that differ between them (or at the length of the shorter tuple):
  (2,0,0) -> (2,0); (2,1,0) -> (2,1).
(3) Choose the lesser tuple: (2,0).
(4) Determine which number would generate this tuple by the process from step (1):
  10 = 2*5 = prime(1) * prime(3) -> (1,3) -> (0,2) -> (0,2) -> (2,0).
This gives A(20, 42) = 10.
(End)
		

Crossrefs

Cf. A000027 (main diagonal).
Cf. also A341510, A347380, A347381.

Programs

  • PARI
    up_to = 105;
    Abincompreflen(n, m) = { my(x=binary(n),y=binary(m),u=min(#x,#y)); for(i=1,u,if(x[i]!=y[i],return(i-1))); (u);};
    Abinprefix(n,k) = { my(digs=binary(n)); fromdigits(vector(k,i,digs[i]),2); };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A348040sq(x,y) = Abincompreflen(A156552(x), A156552(y));
    A348041sq(x,y) = A005940(1+Abinprefix(A156552(x),A348040sq(x,y)));
    A348041list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A348041sq(col,(a-(col-1))))); (v); };
    v348041 = A348041list(up_to);
    A348041(n) = v348041[n];
    
  • PARI
    \\ A348041sq can be defined also as:
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A348041sq(x,y) = if(1==x||1==y,1, my(lista=List([]), i, k=x, stemvec, h=y); while(k>1, listput(lista,k); k = A252463(k)); stemvec = Vecrev(Vec(lista)); while(1, if((i=vecsearch(stemvec,h))>0, return(stemvec[i])); h = A252463(h)));

Formula

A(n, 1) = A(1, n) = 1; otherwise if A241917(n) <> A241917(m) then A(n, m) = A000040(1 + min(A241917(2*n), A241917(2*m))); otherwise A(n, m) = x * A000040(A061395(x)+A241917(n)), where x = A(A052126(n), A052126(m)).
A(i, j) = A(j, i).
A(n, n) = n.
A(2, n) = 2 for all n > 1.
A(p, q) = min(p, q) for any primes p and q.
A(A070003(n), A102750(m)) = 2.
A(u^2, v^2) = A(u, v)^2.
A(4k+2, 6k+3) = A064989(2k+1) for all k >= 1.

A332223 a(1) = 1, and for n > 1, a(n) = A005940(1+sigma(A156552(n))).

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 16, 7, 25, 18, 32, 25, 64, 21, 21, 49, 128, 27, 256, 35, 40, 121, 512, 49, 125, 385, 49, 121, 1024, 13, 2048, 13, 225, 1573, 105, 77, 4096, 57, 187, 343, 8192, 63, 16384, 65, 55, 4693, 32768, 121, 625, 32, 15625, 85, 65536, 81, 180, 91, 253, 9945, 131072, 175, 262144, 508079, 625, 847, 729, 169, 524288, 2057, 2601, 105, 1048576
Offset: 1

Views

Author

Antti Karttunen, Feb 12 2020

Keywords

Comments

From Antti Karttunen, Jul 31 - Aug 06 2020: (Start)
As a curiosity, like with sigma, also here a(14) = a(15). [Cf. also A003973 and A341512]
Question: is it possible that a(k) = 2*k for any k? If not, then the deficiency (A033879) cannot be -1, and there are no quasiperfect numbers. If there were such cases, then A156552(k) = q would be an instance of quasiperfect number, which should also be an odd square, thus k would need to be of the form 4u+2.
In range n <= 10000, a(n) is a nontrivial multiple of n only at n = [25, 35, 343, 539, 847, 3315] with a(n) = [125, 105, 2401, 2695, 2541, 9945]. The quotients are thus also odd: 5, 3, 7, 5, 3, 3.
This rather meager empirical evidence motivates a conjecture that no quotient a(n)/n may be an even integer, and particularly, never a power of 2 larger than one, which (when translated back to the ordinary, unconjugated sigma) claims that it is not possible that sigma(n) = 2^k * n + 2^k - 1, for any n > 1, k > 0. See also A336700 and A336701, where this leads to a rather surprising empirical observation.
(End)

Crossrefs

Cf. A003961, A332449, A332450, A332451, A332460 (for other functions similarly conjugated).

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A332223(n) = if(1==n,n,A005940(1+sigma(A156552(n))));
    
  • PARI
    A332223(n) = if(1==n,n,A005940(1+sumdiv(A156552(n),d,d))); \\ Antti Karttunen, Aug 04 2020

Formula

For n > 1, a(n) = A005940(1+A000203(A156552(n))) = A005940(1+A323243(n)).
a(A324201(n)) = A003961(A324201(n)). [It's an open problem whether A324201 gives all such solutions]
For n > 1, a(n) = A005940(1 + (Sum_{d|A156552(n)} d)). - Antti Karttunen, Aug 04 2020

A332815 a(n) = A108548(A005940(1+n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 25, 18, 27, 16, 13, 14, 21, 20, 35, 30, 45, 24, 49, 50, 75, 36, 125, 54, 81, 32, 11, 26, 39, 28, 65, 42, 63, 40, 91, 70, 105, 60, 175, 90, 135, 48, 169, 98, 147, 100, 245, 150, 225, 72, 343, 250, 375, 108, 625, 162, 243, 64, 17, 22, 33, 52, 55, 78, 117, 56, 77, 130, 195, 84
Offset: 0

Views

Author

Antti Karttunen, Feb 28 2020

Keywords

Comments

This is variant of Doudna-sequence, A005940 and thus can be represented as a binary tree. Each child to the left is obtained by applying A332818 to the parent, and each child to the right is obtained by doubling the parent:
1
|
...................2...................
3 4
5......../ \........6 9......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 10 15 12 25 18 27 16
13 14 21 20 35 30 45 24 49 50 75 36 125 54 81 32
etc.
Note the indexing: the sequence starts with a(0)=1, as is natural for sequences based on maps from base-2 expansion to prime factorization. This is
in contrast to A005940, which for historical reasons starts from offset 1.
For any n > 1, A332893(n) gives the value of the parent node. For any n >= 1, A332894(n) gives the distance to 1, and A332899(n) gives the number of odd numbers that occur (inclusively) on the path from 1 to n.

Crossrefs

Cf. A332816 (inverse permutation).
Cf. A108546 (the left edge of the tree from 2 downward).

Programs

  • PARI
    up_to = 26927;
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A108546list(up_to) = { my(v=vector(up_to), p,q); v[1] = 2; v[2] = 3; v[3] = 5; for(n=4,up_to, p = v[n-2]; q = nextprime(1+p); while(q%4 != p%4, q=nextprime(1+q)); v[n] = q); (v); };
    v108546 = A108546list(up_to);
    A108546(n) = v108546[n];
    A108548(n) = { my(f=factor(n)); f[,1] = apply(A108546,apply(primepi,f[,1])); factorback(f); };
    A332815(n) = A108548(A005940(1+n));

Formula

a(n) = A108548(A005940(1+n)).

A364499 a(n) = A005940(n) - n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 0, -2, 0, 4, 0, 12, 4, 12, 0, -6, -4, 2, 0, 14, 8, 22, 0, 24, 24, 48, 8, 96, 24, 50, 0, -20, -12, -2, -8, 18, 4, 24, 0, 36, 28, 62, 16, 130, 44, 88, 0, 72, 48, 96, 48, 192, 96, 170, 16, 286, 192, 316, 48, 564, 100, 180, 0, -48, -40, -28, -24, -4, -4, 28, -16, 18, 36, 90, 8, 198, 48, 110, 0, 62
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2023

Keywords

Comments

Compare to the scatter plot of A364563.
From Antti Karttunen, Aug 11 2023: (Start)
Can be computed as a certain kind of bitmask transformation of A364568 (analogous to the inverse Möbius transform that is appropriate for A156552-encoding of n).
See A364572, A364573 (and also A364576) for n (apart from those in A029747) where a(n) comes relatively close to the X-axis.
(End)

Examples

			A005940(528577) = 528581, therefore a(528577) = 528581 - 528577 = 4. (See A364576).
A005940(2109697) = 2109629, therefore a(2109697) = 2109629 - 2109697 = -68.
		

Crossrefs

Cf. A005940, A364500 [= gcd(n,a(n))], A364559, A364572, A364573, A364576.
Cf. A029747 (known positions of 0's), A364540 (positions of terms < 0), A364541 (of terms <= 0), A364542 (of terms >= 0), A364563 [= -a(A364543(n))].
Cf. also A364258, A364568.

Programs

  • Mathematica
    nn = 81; Array[Set[a[#], #] &, 2]; Do[If[EvenQ[n], Set[a[n], 2 a[n/2]], Set[a[n], Times @@ Power @@@ Map[{Prime[PrimePi[#1] + 1], #2} & @@ # &, FactorInteger[a[(n + 1)/2]]]]], {n, 3, nn}]; Array[a[#] - # &, nn] (* Michael De Vlieger, Jul 28 2023 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A364499(n) = (A005940(n)-n);
    
  • PARI
    A364499(n) = { my(m=1,p=2,x=0,z=1); n--; while(n, if(!(n%2), p=nextprime(1+p), x += m; z *= p); n>>=1; m <<=1); (z-x)-1; }; \\ Antti Karttunen, Aug 06 2023
    
  • Python
    from math import prod
    from itertools import accumulate
    from collections import Counter
    from sympy import prime
    def A364499(n): return prod(prime(len(a)+1)**b for a, b in Counter(accumulate(bin(n-1)[2:].split('1')[:0:-1])).items())-n # Chai Wah Wu, Aug 07 2023

Formula

a(n) = -A364559(A005940(n)).
For all n >= 1, a(2*n) = 2*a(n).
For all n >= 1, a(A029747(n)) = 0.

A252737 Row sums of irregular tables A005940, A163511, and A332977.

Original entry on oeis.org

1, 2, 7, 28, 130, 702, 4384, 31516, 260068, 2445372, 25796360, 299286550, 3751803964, 50211590696, 712746859372, 10697637496288, 169490803535680, 2830925427778810, 49785906936838240, 921273098388684878, 17944637546960083042, 368472898102440537484, 7993616254370783660414, 183539682466936703629744
Offset: 0

Views

Author

Antti Karttunen, Dec 21 2014

Keywords

Crossrefs

Row sums of tables A005940, A163511, and A332977.
Cf. A252738 (row products).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-`if`(
          i=0, j, 1), j)*ithprime(j), j=1..`if`(i=0, n, i)))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);  # Alois P. Heinz, Mar 04 2020
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - If[i == 0, j, 1], j]* Prime[j], {j, 1, If[i == 0, n, i]}]];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jan 03 2022, after Alois P. Heinz *)
  • PARI
    allocatemem(234567890);
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
    A252737print(up_to_n) = { my(s, i=0, n=0); for(n=0, up_to_n, if(0 == n, s = 1, if(1 == n, s = 2; lev = vector(1); lev[1] = 2, oldlev = lev; lev = vector(2*length(oldlev)); s = 0; for(i = 0, (2^(n-1))-1, lev[i+1] = if((i%2),A003961(oldlev[(i\2)+1]),2*oldlev[(i\2)+1]); s += lev[i+1]))); write("b252737.txt", n, " ", s)); };
    A252737print(23); \\ Terms a(0) .. a(23) were computed with this program.
    
  • Scheme
    (define (A252737 n) (if (zero? n) 1 (add A163511 (A000079 (- n 1)) (A000225 n))))
    
  • Scheme
    (define (A252737 n) (if (zero? n) 1 (add (COMPOSE A005940 1+) (A000079 (- n 1)) (A000225 n))))
    (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (+ 1 i) (+ res (intfun i)))))))
    (define (COMPOSE . funlist) (cond ((null? funlist) (lambda (x) x)) (else (lambda (x) ((car funlist) ((apply COMPOSE (cdr funlist)) x))))))

Formula

a(0) = 1; for n>1: a(n) = Sum_{k = A000079(n-1) .. A000225(n)} A163511(k) = Sum_{k = 2^(n-1) .. (2^n)-1} A163511(k).
Previous Showing 11-20 of 505 results. Next