cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 52 results. Next

A191348 Array read by antidiagonals: ((ceiling(sqrt(n)) + sqrt(n))^k + (ceiling(sqrt(n)) - sqrt(n))^k)/2 for columns k >= 0 and rows n >= 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 6, 2, 1, 0, 8, 20, 7, 2, 1, 0, 16, 68, 26, 8, 3, 1, 0, 32, 232, 97, 32, 14, 3, 1, 0, 64, 792, 362, 128, 72, 15, 3, 1, 0, 128, 2704, 1351, 512, 376, 81, 16, 3, 1, 0
Offset: 0

Views

Author

Charles L. Hohn, May 31 2011

Keywords

Examples

			1, 0,  0,   0,    0,     0,      0,      0,       0,        0,         0, ...
1, 1,  2,   4,    8,    16,     32,     64,     128,      256,       512, ...
1, 2,  6,  20,   68,   232,    792,   2704,    9232,    31520,    107616, ...
1, 2,  7,  26,   97,   362,   1351,   5042,   18817,    70226,    262087, ...
1, 2,  8,  32,  128,   512,   2048,   8192,   32768,   131072,    524288, ...
1, 3, 14,  72,  376,  1968,  10304,  53952,  282496,  1479168,   7745024, ...
1, 3, 15,  81,  441,  2403,  13095,  71361,  388881,  2119203,  11548575, ...
1, 3, 16,  90,  508,  2868,  16192,  91416,  516112,  2913840,  16450816, ...
1, 3, 17,  99,  577,  3363,  19601, 114243,  665857,  3880899,  22619537, ...
1, 3, 18, 108,  648,  3888,  23328, 139968,  839808,  5038848,  30233088, ...
1, 4, 26, 184, 1316,  9424,  67496, 483424, 3462416, 24798784, 177615776, ...
1, 4, 27, 196, 1433, 10484,  76707, 561236, 4106353, 30044644, 219825387, ...
1, 4, 28, 208, 1552, 11584,  86464, 645376, 4817152, 35955712, 268377088, ...
1, 4, 29, 220, 1673, 12724,  96773, 736012, 5597777, 42574180, 323800109, ...
1, 4, 30, 232, 1796, 13904, 107640, 833312, 6451216, 49943104, 386642400, ...
...
		

Crossrefs

Row 1 is A000007, row 2 is A011782, row 3 is A006012, row 4 is A001075, row 5 is A081294, row 6 is A098648, row 7 is A084120, row 8 is A146963, row 9 is A001541, row 10 is A081341, row 11 is A084134, row 13 is A090965.
Row 3*2 is A056236, row 4*2 is A003500, row 5*2 is A155543, row 9*2 is A003499.
Cf. A191347 which uses floor() in place of ceiling().

Programs

  • PARI
    T(n, k) = if (k==0, 1, if (k==1, ceil(sqrt(n)), T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2));
    matrix(9, 9, n, k, T(n-1, k-1)) \\ Charles L. Hohn, Aug 23 2019

Formula

For each row n >= 0 let T(n,0)=1 and T(n,1) = ceiling(sqrt(n)), then for each column k >= 2: T(n,k) = T(n,k-2)*(n-T(n,1)^2) + T(n,k-1)*T(n,1)*2. - Charles L. Hohn, Aug 23 2019

A082388 a(1) = 1, a(2) = 2; further terms are defined by rules that for k >= 2, a(2^k-i) = a(2^k+i) for 1 <= i <= 2^k-1 and a(2^k) = a(2^(k-1)) + Sum_{i < 2^k} a(i).

Original entry on oeis.org

1, 2, 1, 6, 1, 2, 1, 20, 1, 2, 1, 6, 1, 2, 1, 68, 1, 2, 1, 6, 1, 2, 1, 20, 1, 2, 1, 6, 1, 2, 1, 232, 1, 2, 1, 6, 1, 2, 1, 20, 1, 2, 1, 6, 1, 2, 1, 68, 1, 2, 1, 6, 1, 2, 1, 20, 1, 2, 1, 6, 1, 2, 1, 792, 1, 2, 1, 6, 1, 2, 1, 20, 1, 2, 1, 6, 1, 2, 1, 68, 1, 2, 1, 6, 1, 2, 1, 20, 1, 2, 1, 6, 1, 2, 1, 232, 1, 2, 1
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2003

Keywords

Crossrefs

Cf. A006012.

Programs

  • Mathematica
    a[n_] := With[{e = IntegerExponent[n, 2]}, Sum[Binomial[e, 2k] 2^(e-k), {k, 0, Quotient[e, 2]}]];
    a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019, from PARI *)
  • PARI
    a(n)={my(e=valuation(n,2)); sum(k=0, e\2, binomial(e, 2*k)*2^(e-k))} \\ Andrew Howroyd, Jul 31 2018

Formula

a(2^k) = 4*a(2^(k-1)) - 2*a(2^(k-2));
a(2^k) = round((1/2)*(2+sqrt(2))^k).
Multiplicative with a(2^e) = A006012(e), a(p^e) = 1 for odd prime p. - Andrew Howroyd, Jul 31 2018

A124216 Generalized Pascal triangle.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 34, 16, 1, 1, 25, 90, 90, 25, 1, 1, 36, 195, 328, 195, 36, 1, 1, 49, 371, 931, 931, 371, 49, 1, 1, 64, 644, 2240, 3334, 2240, 644, 64, 1, 1, 81, 1044, 4788, 9846, 9846
Offset: 0

Views

Author

Paul Barry, Oct 19 2006

Keywords

Comments

Consider the 1-parameter family of triangles with g.f. (1-x(1+y))/(1-2x(1+y)+x^2(1+k*x+y^2)). A007318 corresponds to k=2. A056241 corresponds to k=1. A124216 corresponds to k=0. Row sums are A006012. Diagonal sums are A124217.

Examples

			Triangle begins
1,
1, 1,
1, 4, 1,
1, 9, 9, 1,
1, 16, 34, 16, 1,
1, 25, 90, 90, 25, 1,
1, 36, 195, 328, 195, 36, 1,
1, 49, 371, 931, 931, 371, 49, 1
		

Crossrefs

Cf. A001263.

Formula

G.f.: (1-x(1+y))/(1-2x(1+y)+x^2(1+y^2)); Number triangle T(n,k)=sum{j=0..n, C(n,j)C(j,2(j-k))2^(j-k)}.
Equals 2*A001263 - A007318; (i.e. twice the Narayana triangle minus Pascal's triangle). - Gary W. Adamson, Jun 14 2007

A152599 a(n) = 10*a(n-1) - 12*a(n-2) for n > 1; a(0) = 1, a(1) = 4 .

Original entry on oeis.org

1, 4, 28, 232, 1984, 17056, 146752, 1262848, 10867456, 93520384, 804794368, 6925699072, 59599458304, 512886194176, 4413668442112, 37982050091008, 326856479604736, 2812780194955264, 24205524194295808, 208301879603494912, 1792552505703399424, 15425902501792055296
Offset: 0

Views

Author

Philippe Deléham, Dec 09 2008

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{10, -12}, {1, 4}, 25] (* Paolo Xausa, Jan 19 2024 *)

Formula

G.f.: (1-6*x)/(1-10*x+12*x^2).
a(n) = Sum_{k=0..n} A147703(n,k)*3^(n-k).
a(n) = 2^n*A052961(n). - R. J. Mathar, Jun 14 2016

A221337 T(n,k)=Number of nXk arrays of occupancy after each element stays put or moves to some king-move neighbor, with every occupancy equal to zero or two.

Original entry on oeis.org

0, 2, 2, 0, 6, 0, 4, 20, 20, 4, 0, 68, 0, 68, 0, 8, 232, 790, 790, 232, 8, 0, 792, 0, 10704, 0, 792, 0, 16, 2704, 34042, 142792, 142792, 34042, 2704, 16, 0, 9232, 0, 1937900, 0, 1937900, 0, 9232, 0, 32, 31520, 1470618, 26264018
Offset: 1

Views

Author

R. H. Hardin Jan 11 2013

Keywords

Comments

Table starts
..0....2.....0.......4......0.......8........0......16.....0.32
..2....6....20......68....232.....792.....2704....9232.31520
..0...20.....0.....790......0...34042........0.1470618
..4...68...790...10704.142792.1937900.26264018
..0..232.....0..142792......0
..8..792.34042.1937900
..0.2704.....0
.16.9232
..0

Examples

			Some solutions for n=3 k=4
..0..2..2..2....2..0..0..0....2..0..2..0....0..0..2..0....0..2..2..0
..2..0..0..0....2..2..2..0....0..0..2..0....2..2..0..0....2..2..0..0
..0..2..0..2....0..2..0..2....2..0..2..2....2..0..2..2....0..0..2..2
		

Crossrefs

Column 1 is A077957
Column 2 is A006012

A361432 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,2*j).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 4, 0, 1, 4, 12, 20, 8, 0, 1, 5, 20, 54, 68, 16, 0, 1, 6, 30, 112, 252, 232, 32, 0, 1, 7, 42, 200, 656, 1188, 792, 64, 0, 1, 8, 56, 324, 1400, 3904, 5616, 2704, 128, 0, 1, 9, 72, 490, 2628, 10000, 23360, 26568, 9232, 256, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 11 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1, ...
  0,  1,   2,    3,    4,     5, ...
  0,  2,   6,   12,   20,    30, ...
  0,  4,  20,   54,  112,   200, ...
  0,  8,  68,  252,  656,  1400, ...
  0, 16, 232, 1188, 3904, 10000, ...
		

Crossrefs

Main diagonal gives A084062.

Programs

  • PARI
    T(n,k) = sum(j=0, n\2, k^(n-j)*binomial(n, 2*j));
    
  • PARI
    T(n, k) = round(((k+sqrt(k))^n+(k-sqrt(k))^n))/2;

Formula

T(0,k) = 1, T(1,k) = k; T(n,k) = 2 * k * T(n-1,k) - (k-1) * k * T(n-2,k).
T(n,k) = ((k + sqrt(k))^n + (k - sqrt(k))^n)/2.
G.f. of column k: (1 - k * x)/(1 - 2 * k * x + (k-1) * k * x^2).
E.g.f. of column k: exp(k * x) * cosh(sqrt(k) * x).

A052680 Expansion of e.g.f. (1-2*x)/(1-4*x+2*x^2).

Original entry on oeis.org

1, 2, 12, 120, 1632, 27840, 570240, 13628160, 372234240, 11437977600, 390516940800, 14666390323200, 600890263142400, 26670379902566400, 1274817218759884800, 65287473566515200000, 3566486043252228096000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*(&+[Binomial(n, 2*k)*2^(n-k): k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jun 10 2022
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Prod(Z,Sequence(Union(Z,Z)))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-2x)/(1-4x+2x^2),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Jan 28 2019 *)
    Table[n!*2^(n/2)*ChebyshevT[n, Sqrt[2]], {n,0,50}] (* G. C. Greubel, Jun 10 2022 *)
  • SageMath
    [2^(n/2)*factorial(n)*chebyshev_T(n, sqrt(2)) for n in (0..50)] # G. C. Greubel, Jun 10 2022

Formula

E.g.f.: (1 - 2*x)/(1 - 4*x + 2*x^2).
D-finite with Recurrence: a(0)=1, a(1)=2, a(n+2) = 4*(n+2)*a(n+1) - 2*(2 +3*n +n^2)*a(n).
a(n) = (n!/2)*Sum_{alpha=RootOf(1 - 4*Z + 2*Z^2)} alpha^(-n).
a(n) = n!*A006012(n). - R. J. Mathar, Nov 27 2011
From G. C. Greubel, Jun 10 2022: (Start)
a(2*n) = (2*n)! * 2^(n-1)*A002203(2*n).
a(2*n+1) = (2*n+1)! * 2^(n+1)*A000129(2*n+1).
a(n) = 2^(n/2) * n! * ChebyshevT(n, sqrt(2)). (End)

A084867 Symmetric square table, read by antidiagonals, such that antidiagonal sums form the first row shifted left: T(0,0)=1, T(0,k) = Sum_{m=0..k-1} T(m,k-1-m) when k > 0; and T(n,k) = T(n-1,k) + T(n,k-1) when n > 0, k > 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 6, 4, 4, 6, 20, 10, 8, 10, 20, 68, 30, 18, 18, 30, 68, 232, 98, 48, 36, 48, 98, 232, 792, 330, 146, 84, 84, 146, 330, 792, 2704, 1122, 476, 230, 168, 230, 476, 1122, 2704, 9232, 3826, 1598, 706, 398, 398, 706, 1598, 3826, 9232, 31520, 13058, 5424
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2003, Jun 11 2003

Keywords

Comments

Antidiagonal sums give A006012. Table is symmetric under transpose, so that first column equals the first row. Second row gives partial sums of first row.

Examples

			Table begins:
     1,     1,     2,     6,    20,    68,   232,    792, ...
     1,     2,     4,    10,    30,    98,   330,   1122, ...
     2,     4,     8,    18,    48,   146,   476,   1598, ...
     6,    10,    18,    36,    84,   230,   706,   2304, ...
    20,    30,    48,    84,   168,   398,  1104,   3408, ...
    68,    98,   146,   230,   398,   796,  1900,   5308, ...
   232,   330,   476,   706,  1104,  1900,  3800,   9108, ...
   792,  1122,  1598,  2304,  3408,  5308,  9108,  18216, ...
  2704,  3826,  5424,  7728, 11136, 16444, 25552,  43768, ...
  9232, 13058, 18482, 26210, 37346, 53790, 79342, 123110, ...
		

Crossrefs

Cf. A006012 (row sums), A084868 (main diagonal).

Formula

T(0,0)=1, T(0,1)=1, T(0,n) = 4*T(0,n-1) - 2*T(0,n-2) when n >= 2.

A199479 Triangle T(n,k), read by rows, given by (1,0,0,0,0,0,0,0,0,0,...) DELTA (1,1,1,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 5, 9, 5, 1, 7, 20, 27, 13, 1, 9, 35, 73, 80, 34, 1, 11, 54, 151, 252, 234, 89, 1, 13, 77, 269, 597, 837, 677, 233, 1, 15, 104, 435, 1199, 2225, 2702, 1941, 610, 1, 17, 135, 657, 2158, 4956, 7943, 8533, 5523, 1597
Offset: 0

Views

Author

Philippe Deléham, Nov 06 2011

Keywords

Comments

Mirror image of triangle in A147703.

Examples

			Triangle begins:
  1;
  1,  1;
  1,  3,  2;
  1,  5,  9,  5;
  1,  7, 20, 27, 13;
  1,  9, 35, 73, 80, 34;
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A152620(n), A152594(n), A000007(n), A000012(n), A006012(n), A152596(n), A152599(n) for x=-3,-2,-1,0,1,2,3 respectively.
T(n,n) = A001519(n).
G.f.: (1-2y*x)/(1-(1+3y)*x+y*(1+y)*x^2).

A331969 T(n, k) = [x^(n-k)] 1/(((1 - 2*x)^k)*(1 - x)^(k + 1)). Triangle read by rows, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 7, 1, 1, 26, 30, 10, 1, 1, 57, 102, 58, 13, 1, 1, 120, 303, 256, 95, 16, 1, 1, 247, 825, 955, 515, 141, 19, 1, 1, 502, 2116, 3178, 2310, 906, 196, 22, 1, 1, 1013, 5200, 9740, 9078, 4746, 1456, 260, 25, 1
Offset: 0

Views

Author

Peter Luschny, Feb 03 2020

Keywords

Comments

The triangle is the matrix inverse of the Riordan square (see A321620) generated by (1 + x - sqrt(1 - 6*x + x^2))/(4*x) (see A172094), where we take the absolute value of the terms.
T(n,k) is the number of evil-avoiding (2413, 3214, 4132, and 4213 avoiding) permutations of length (n+2) that start with 1 and whose inverse has k descents. - Donghyun Kim, Aug 16 2021

Examples

			Triangle starts:
[0] [1]
[1] [1,    1]
[2] [1,    4,    1]
[3] [1,   11,    7,    1]
[4] [1,   26,   30,   10,    1]
[5] [1,   57,  102,   58,   13,    1]
[6] [1,  120,  303,  256,   95,   16,    1]
[7] [1,  247,  825,  955,  515,  141,   19,   1]
[8] [1,  502, 2116, 3178, 2310,  906,  196,  22,  1]
[9] [1, 1013, 5200, 9740, 9078, 4746, 1456, 260, 25, 1]
...
Seen as a square array (the triangle is formed by descending antidiagonals):
1,  1,   1,    1,    1,     1,      1,      1,       1, ... [A000012]
1,  4,  11,   26,   57,   120,    247,    502,    1013, ... [A000295]
1,  7,  30,  102,  303,   825,   2116,   5200,   12381, ... [A045889]
1, 10,  58,  256,  955,  3178,   9740,  28064,   77093, ... [A055583]
1, 13,  95,  515, 2310,  9078,  32354, 106970,  333295, ...
1, 16, 141,  906, 4746, 21504,  87374, 326084, 1136799, ...
1, 19, 196, 1456, 8722, 44758, 204204, 849180, 3275931, ...
		

Crossrefs

Row sums A006012, alternating row sums A118434 with different signs, central column A091527.
T(n, 1) = A000295(n+1) for n >= 1, T(n, 2) = A045889(n-2) for n >= 2, T(n, 3) = A055583(n-3) for n >= 3.
Cf. A172094 (inverse up to sign).

Programs

  • Maple
    gf := k -> 1/(((1-2*x)^k)*(1-x)^(k+1)): ser := k -> series(gf(k), x, 32):
    # Prints the triangle:
    seq(lprint(seq(coeff(ser(k), x, n-k), k=0..n)), n=0..6);
    # Prints the square array:
    seq(lprint(seq(coeff(ser(k), x, n), n=0..8)), k=0..6);
  • Mathematica
    (* The function RiordanSquare is defined in A321620; returns the triangle as a lower triangular matrix. *)
    M := RiordanSquare[(1 + x - Sqrt[1 - 6 x + x^2])/(4 x), 9];
    Abs[#] & /@ Inverse[PadRight[M]]
Previous Showing 41-50 of 52 results. Next