cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 153 results. Next

A339843 Number of distinct sorted degree sequences among all n-vertex half-loop-graphs without isolated vertices.

Original entry on oeis.org

1, 1, 3, 9, 29, 97, 336, 1188, 4275, 15579, 57358, 212908, 795657, 2990221, 11291665, 42814783, 162920417, 621885767, 2380348729
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2020

Keywords

Comments

In the covering case, these degree sequences, sorted in decreasing order, are the same thing as half-loop-graphical partitions (A321729). An integer partition is half-loop-graphical if it comprises the multiset of vertex-degrees of some graph with half-loops, where a half-loop is an edge with one vertex.
The following are equivalent characteristics for any positive integer n:
(1) the prime indices of n can be partitioned into distinct singletons or strict pairs, i.e., into a set of half-loops or edges;
(2) n can be factored into distinct primes or squarefree semiprimes;
(3) the prime signature of n is half-loop-graphical.

Examples

			The a(0) = 1 through a(3) = 9 sorted degree sequences:
  ()  (1)  (1,1)  (1,1,1)
           (2,1)  (2,1,1)
           (2,2)  (2,2,1)
                  (2,2,2)
                  (3,1,1)
                  (3,2,1)
                  (3,2,2)
                  (3,3,2)
                  (3,3,3)
For example, the half-loop-graphs
  {{1},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3}}
both have degrees y = (3,2,2), so y is counted under a(3).
		

Crossrefs

See link for additional cross references.
The version for simple graphs is A004251, covering: A095268.
The non-covering version (it allows isolated vertices) is A029889.
The same partitions counted by sum are conjectured to be A321729.
These graphs are counted by A006125 shifted left, covering: A322661.
The version for full loops is A339844, covering: A339845.
These graphs are ranked by A340018 and A340019.
A006125 counts labeled simple graphs, covering: A006129.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A339659 counts graphical partitions of 2n into k parts.

Programs

  • Mathematica
    Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Select[Subsets[Subsets[Range[n],{1,2}]],Union@@#==Range[n]&]]],{n,0,5}]

Formula

a(n) = A029889(n) - A029889(n-1) for n > 0. - Andrew Howroyd, Jan 10 2024

Extensions

a(7)-a(18) added (using A029889) by Andrew Howroyd, Jan 10 2024

A368836 Triangle read by rows where T(n,k) is the number of unlabeled loop-graphs on up to n vertices with k loops and n-k non-loops.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 2, 6, 6, 2, 1, 6, 17, 18, 8, 2, 1, 21, 52, 58, 30, 9, 2, 1, 65, 173, 191, 107, 37, 9, 2, 1, 221, 585, 666, 393, 148, 39, 9, 2, 1, 771, 2064, 2383, 1493, 589, 168, 40, 9, 2, 1, 2769, 7520, 8847, 5765, 2418, 718, 176, 40, 9, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 11 2024

Keywords

Comments

Are the row sums the same as column k = 1 (shifted left)?
Yes. When k = 1 there is one loop. Remove the vertex with the loop and add loops to its neighbors. This process is reversible so there is a bijection. - Andrew Howroyd, Jan 13 2024

Examples

			Triangle begins:
   1
   0  1
   0  1  1
   1  2  2  1
   2  6  6  2  1
   6 17 18  8  2  1
  21 52 58 30  9  2  1
Representatives of the loop-graphs counted by row n = 4:
  {12}{13}{14}{23} {1}{12}{13}{14} {1}{2}{12}{13} {1}{2}{3}{12} {1}{2}{3}{4}
  {12}{13}{24}{34} {1}{12}{13}{23} {1}{2}{12}{34} {1}{2}{3}{14}
                   {1}{12}{13}{24} {1}{2}{13}{14}
                   {1}{12}{23}{24} {1}{2}{13}{23}
                   {1}{12}{23}{34} {1}{2}{13}{24}
                   {1}{23}{24}{34} {1}{2}{13}{34}
		

Crossrefs

Column k = 0 is A001434.
Row sums are A368598.
The labeled version is A368928.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A014068 counts loop-graphs, unlabeled A000666.
A058891 counts set-systems, unlabeled A000612.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}],{n}],Count[#,{_}]==k&]]], {n,0,4},{k,0,n}]
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    row(n) = {my(s=0, A=1+O(x*x^n)); forpart(p=n, s+=permcount(p) * polcoef(edges(p, i->A + x^i)*prod(i=1, #p, A + (x*y)^p[i]), n)); Vecrev(s/n!)} \\ Andrew Howroyd, Jan 13 2024

Extensions

a(28) onwards from Andrew Howroyd, Jan 13 2024

A369200 Number of unlabeled loop-graphs covering n vertices such that it is possible to choose a different vertex from each edge (choosable).

Original entry on oeis.org

1, 1, 3, 7, 18, 43, 112, 282, 740, 1940, 5182, 13916, 37826, 103391, 284815, 788636, 2195414, 6137025, 17223354, 48495640, 136961527, 387819558, 1100757411, 3130895452, 8922294498, 25470279123, 72823983735, 208515456498, 597824919725, 1716072103910, 4931540188084
Offset: 0

Views

Author

Gus Wiseman, Jan 23 2024

Keywords

Comments

These are covering loop-graphs with at most one cycle (unicyclic) in each connected component.

Examples

			Representatives of the a(1) = 1 through a(4) = 18 loop-graphs (loops shown as singletons):
  {{1}}  {{1,2}}      {{1},{2,3}}          {{1,2},{3,4}}
         {{1},{2}}    {{1,2},{1,3}}        {{1},{2},{3,4}}
         {{1},{1,2}}  {{1},{2},{3}}        {{1},{1,2},{3,4}}
                      {{1},{2},{1,3}}      {{1},{2,3},{2,4}}
                      {{1},{1,2},{1,3}}    {{1},{2},{3},{4}}
                      {{1},{1,2},{2,3}}    {{1,2},{1,3},{1,4}}
                      {{1,2},{1,3},{2,3}}  {{1,2},{1,3},{2,4}}
                                           {{1},{2},{3},{1,4}}
                                           {{1},{2},{1,3},{1,4}}
                                           {{1},{2},{1,3},{2,4}}
                                           {{1},{2},{1,3},{3,4}}
                                           {{1},{1,2},{1,3},{1,4}}
                                           {{1},{1,2},{1,3},{2,4}}
                                           {{1},{1,2},{2,3},{2,4}}
                                           {{1},{1,2},{2,3},{3,4}}
                                           {{1},{2,3},{2,4},{3,4}}
                                           {{1,2},{1,3},{1,4},{2,3}}
                                           {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

Without the choice condition we have A322700, labeled A322661.
Without loops we have A368834, covering case of A134964.
For exactly n edges we have A368984, labeled A333331 (maybe).
The labeled version is A369140, covering case of A368927.
The labeled complement is A369142, covering case of A369141.
This is the covering case of A369145.
The complement is counted by A369147, covering case of A369146.
The complement without loops is A369202, covering case of A140637.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs, labeled A006125 (shifted left).
A006129 counts covering graphs, unlabeled A002494.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A129271 counts connected choosable simple graphs, unlabeled A005703.
A133686 counts choosable labeled graphs, covering A367869.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n]&&Length[Select[Tuples[#], UnsameQ@@#&]]!=0&]]],{n,0,4}]

Formula

First differences of A369145.
Euler transform of A369289 with A369289(1) = 1. - Andrew Howroyd, Feb 02 2024

Extensions

a(7) onwards from Andrew Howroyd, Feb 02 2024

A370317 Number of labeled graphs with n vertices (allowing isolated vertices) and n edges, such that the edge set is connected.

Original entry on oeis.org

1, 0, 0, 1, 15, 252, 4905, 110715, 2864148, 83838720, 2744568522, 99463408335, 3955626143040, 171344363805582, 8031863998136355, 405150528051451000, 21884686370917378050, 1260420510502767861840, 77105349570138633021624, 4993117552678619556356085
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2024

Keywords

Examples

			The a(0) = 0 through a(4) = 15 graphs:
  {}  .  .  {{1,2},{1,3},{2,3}}  {{1,2},{1,3},{1,4},{2,3}}
                                 {{1,2},{1,3},{1,4},{2,4}}
                                 {{1,2},{1,3},{1,4},{3,4}}
                                 {{1,2},{1,3},{2,3},{2,4}}
                                 {{1,2},{1,3},{2,3},{3,4}}
                                 {{1,2},{1,3},{2,4},{3,4}}
                                 {{1,2},{1,4},{2,3},{2,4}}
                                 {{1,2},{1,4},{2,3},{3,4}}
                                 {{1,2},{1,4},{2,4},{3,4}}
                                 {{1,2},{2,3},{2,4},{3,4}}
                                 {{1,3},{1,4},{2,3},{2,4}}
                                 {{1,3},{1,4},{2,3},{3,4}}
                                 {{1,3},{1,4},{2,4},{3,4}}
                                 {{1,3},{2,3},{2,4},{3,4}}
                                 {{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

The covering case is A057500.
This is the connected case of A116508.
Allowing any number of edges gives A287689.
Counting only covered vertices gives A370318.
A006125 counts graphs, unlabeled A000088.
A006129 counts covering graphs, connected A001187.
A369192 counts graphs with at most n edges, covering A369191.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n], {2}]],Length[#]==n&&Length[csm[#]]<=1&]], {n,0,5}]
  • PARI
    a(n)=n!*polcoef(polcoef(exp(x + O(x*x^n))*(1 + log(sum(k=0, n, (1 + y + O(y*y^n))^binomial(k,2)*x^k/k!, O(x*x^n)))), n), n) \\ Andrew Howroyd, Feb 19 2024

Formula

a(n) = n!*[x^n][y^n] exp(x)*(1 + log(Sum_{k>=0} (1 + y)^binomial(k, 2)*x^k/k!)). - Andrew Howroyd, Feb 19 2024

Extensions

a(8) onwards from Andrew Howroyd, Feb 19 2024

A001862 Number of forests of least height with n nodes.

Original entry on oeis.org

1, 1, 2, 7, 26, 111, 562, 3151, 19252, 128449, 925226, 7125009, 58399156, 507222535, 4647051970, 44747776651, 451520086208, 4761032807937, 52332895618066, 598351410294193, 7102331902602676, 87365859333294151, 1111941946738682522, 14621347433458883187
Offset: 0

Views

Author

Keywords

Comments

From Gus Wiseman, Feb 14 2024: (Start)
Also the number of minimal loop-graphs covering n vertices. This is the minimal case of A322661. For example, the a(0) = 1 through a(3) = 7 loop-graphs are (loops represented as singletons):
{} {1} {12} {1-23}
{1-2} {2-13}
{3-12}
{12-13}
{12-23}
{13-23}
{1-2-3}
(End)

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983. See (3.3.7): number of ways to cover the complete graph K_n with star graphs.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The connected case is A000272.
Without loops we have A053530, minimal case of A369191.
This is the minimal case of A322661.
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 counts simple graphs; also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.

Programs

  • Mathematica
    Range[0, 20]! CoefficientList[Series[Exp[x Exp[x] - x^2/2], {x, 0, 20}], x] (* Geoffrey Critzer, Mar 13 2011 *)
    fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]& /@ Rest[Subsets[Complement[Union@@y,s]]],{s,y}]];
    Table[Length@fasmin[Select[Subsets[Subsets[Range[n],{1,2}]], Union@@#==Range[n]&]],{n,0,4}] (* Gus Wiseman, Feb 14 2024 *)

Formula

E.g.f.: exp(x*(exp(x)-x/2)).
Binomial transform of A053530. - Gus Wiseman, Feb 14 2024

Extensions

Formula and more terms from Vladeta Jovovic, Mar 27 2001

A324463 Number of graphical necklaces covering n vertices.

Original entry on oeis.org

1, 0, 1, 2, 15, 156, 4665, 269618, 31573327, 7375159140, 3450904512841, 3240500443884718, 6113078165054644451, 23175001880311842459108, 176546824267008236554238517, 2701847513793569606737940203894, 83036203475880811677609125194805687
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2019

Keywords

Comments

A graphical necklace is a simple graph that is minimal among all n rotations of the vertices. Alternatively, it is an equivalence class of simple graphs under rotation of the vertices. Covering means there are no isolated vertices. These are a kind of partially labeled graphs.

Examples

			Inequivalent representatives of the a(2) = 1 through a(4) = 15 graphical necklaces:
  {{12}}  {{12}{13}}      {{12}{34}}
          {{12}{13}{23}}  {{13}{24}}
                          {{12}{13}{14}}
                          {{12}{13}{24}}
                          {{12}{13}{34}}
                          {{12}{14}{23}}
                          {{12}{24}{34}}
                          {{12}{13}{14}{23}}
                          {{12}{13}{14}{24}}
                          {{12}{13}{14}{34}}
                          {{12}{13}{24}{34}}
                          {{12}{14}{23}{34}}
                          {{12}{13}{14}{23}{24}}
                          {{12}{13}{14}{23}{34}}
                          {{12}{13}{14}{23}{24}{34}}
		

Crossrefs

Programs

  • Mathematica
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]]&]],{n,0,5}]
  • PARI
    a(n)={if(n<1, n==0, sumdiv(n, d, eulerphi(n/d)*sum(k=0, d, (-1)^(d-k)*binomial(d,k)*2^(k*(k-1)*n/(2*d) + k*(n/d\2))))/n)} \\ Andrew Howroyd, Aug 19 2019

Formula

a(n) = (1/n)*Sum{d|n} phi(n/d) * Sum_{k=0..d} (-1)^(d-k)*binomial(d,k)*2^( k*(k-1)*n/(2*d) + k*(floor(n/(2*d))) ). - Andrew Howroyd, Aug 19 2019

Extensions

Terms a(7) and beyond from Andrew Howroyd, Aug 19 2019

A324464 Number of connected graphical necklaces with n vertices.

Original entry on oeis.org

1, 0, 1, 2, 13, 148, 4530, 266614, 31451264, 7366255436, 3449652145180, 3240150686268514, 6112883022923529310, 23174784819204929919428, 176546343645071836902594288, 2701845395848698682311893154024, 83036184895986451215378727412638816, 5122922885438069578928905234650082410736
Offset: 0

Views

Author

Gus Wiseman, Mar 01 2019

Keywords

Comments

A graphical necklace is a simple graph that is minimal among all n rotations of the vertices. Alternatively, it is an equivalence class of simple graphs under rotation of the vertices. These are a kind of partially labeled graphs.

Examples

			Inequivalent representatives of the a(2) = 1 through a(4) = 13 graphical necklaces:
  {{12}}  {{12}{13}}      {{12}{13}{14}}
          {{12}{13}{23}}  {{12}{13}{24}}
                          {{12}{13}{34}}
                          {{12}{14}{23}}
                          {{12}{24}{34}}
                          {{12}{13}{14}{23}}
                          {{12}{13}{14}{24}}
                          {{12}{13}{14}{34}}
                          {{12}{13}{24}{34}}
                          {{12}{14}{23}{34}}
                          {{12}{13}{14}{23}{24}}
                          {{12}{13}{14}{23}{34}}
                          {{12}{13}{14}{23}{24}{34}}
		

Crossrefs

Programs

  • Mathematica
    rotgra[g_,m_]:=Sort[Sort/@(g/.k_Integer:>If[k==m,1,k+1])];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[csm[#]]<=1,#=={}||#==First[Sort[Table[Nest[rotgra[#,n]&,#,j],{j,n}]]]]&]],{n,0,5}]
  • PARI
    \\ B(n,d) is graphs on n*d points invariant under 1/d rotation.
    B(n,d)={2^(n*(n-1)*d/2 + n*(d\2))}
    D(n,d)={my(v=vector(n, i, B(i,d)), u=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); sumdiv(n, e, eulerphi(d*e) * moebius(e) * u[n/e] * e^(n/e-1))}
    a(n)={if(n<=1, n==0, sumdiv(n, d, D(n/d,d))/n)} \\ Andrew Howroyd, Jan 24 2023

Extensions

Terms a(7) and beyond from Andrew Howroyd, Jan 24 2023

A327362 Number of labeled connected graphs covering n vertices with at least one endpoint (vertex of degree 1).

Original entry on oeis.org

0, 0, 1, 3, 28, 475, 14646, 813813, 82060392, 15251272983, 5312295240010, 3519126783483377, 4487168285715524124, 11116496280631563128723, 53887232400918561791887118, 513757147287101157620965656285, 9668878162669182924093580075565776
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

A graph is covering if the vertex set is the union of the edge set, so there are no isolated vertices.

Crossrefs

The non-connected version is A327227.
The non-covering version is A327364.
Graphs with endpoints are A245797.
Connected covering graphs are A001187.
Connected graphs with bridges are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,5}]
  • PARI
    seq(n)={Vec(serlaplace(-x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k! + O(x*x^n))) - log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!))), -(n+1))} \\ Andrew Howroyd, Sep 11 2019

Formula

Inverse binomial transform of A327364.
a(n) = A001187(n) - A059166(n). - Andrew Howroyd, Sep 11 2019

Extensions

Terms a(7) and beyond from Andrew Howroyd, Sep 11 2019

A327366 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and minimum vertex-degree k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 23, 31, 9, 1, 0, 256, 515, 227, 25, 1, 0, 5319, 15381, 10210, 1782, 75, 1, 0, 209868, 834491, 815867, 221130, 15564, 231, 1, 0, 15912975, 83016613, 116035801, 47818683, 5499165, 151455, 763, 1, 0, 2343052576, 15330074139, 29550173053, 18044889597, 3291232419, 158416629, 1635703, 2619, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

The minimum vertex-degree of the empty graph is infinity. It has been included here under k = 0. - Andrew Howroyd, Mar 09 2020

Examples

			Triangle begins:
     1
     1     0
     1     1     0
     4     3     1     0
    23    31     9     1     0
   256   515   227    25     1     0
  5319 15381 10210  1782    75     1     0
		

Crossrefs

Row sums are A006125.
Row sums without the first column are A006129.
Row sums without the first two columns are A100743.
Column k = 0 is A327367(n > 0).
Column k = 1 is A327227.
The unlabeled version is A294217.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],k==If[#=={}||Union@@#!=Range[n],0,Min@@Length/@Split[Sort[Join@@#]]]&]],{n,0,5},{k,0,n}]
  • PARI
    GraphsByMaxDegree(n)={
      local(M=Map(Mat([x^0, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(merge(r, p, v)=acc(p + sum(i=1, poldegree(p)-r-1, polcoef(p, i)*(1-x^i)), v));
      my(recurse(r, p, i, q, v, e)=if(i<0, merge(r, x^e+q, v), my(t=polcoef(p, i)); for(k=0, t, self()(r, p, i-1, (t-k+x*k)*x^i+q, binomial(t, k)*v, e+k))));
      for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i, 1]); recurse(n-k, p, poldegree(p), 0, src[i, 2], 0)));
      Mat(M);
    }
    Row(n)={if(n==0, [1], my(M=GraphsByMaxDegree(n), u=vector(n+1)); for(i=1, matsize(M)[1], u[n-poldegree(M[i,1])]+=M[i,2]); u)}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 09 2020

Extensions

Terms a(28) and beyond from Andrew Howroyd, Sep 09 2019

A327377 Triangle read by rows where T(n,k) is the number of labeled simple graphs covering n vertices with exactly k endpoints (vertices of degree 1).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 0, 3, 0, 10, 12, 12, 4, 3, 253, 260, 160, 60, 35, 0, 12068, 9150, 4230, 1440, 480, 66, 15, 1052793, 570906, 195048, 53200, 12600, 2310, 427, 0, 169505868, 63523656, 15600032, 3197040, 585620, 95088, 14056, 1016, 105
Offset: 0

Views

Author

Gus Wiseman, Sep 05 2019

Keywords

Comments

A graph is covering if there are no isolated vertices.

Examples

			Triangle begins:
      1
      0     0
      0     0     1
      1     0     3     0
     10    12    12     4     3
    253   260   160    60    35     0
  12068  9150  4230  1440   480    66    15
		

Crossrefs

Row sums are A006129.
Column k = 0 is A100743.
Column k = n is A123023.
Row sums without the first column are A327227.
The non-covering version is A327369.
The unlabeled version is A327372.

Programs

  • PARI
    Row(n)={ \\ R, U, B are e.g.f. of A055302, A055314, A059167.
      my(U=sum(n=2, n, x^n*sum(k=1, n, stirling(n-2, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(R=sum(n=1, n, x^n*sum(k=1, n, stirling(n-1, n-k, 2)*y^k/k!)) + O(x*x^n));
      my(B=x^2/2 + log(sum(k=0, n, 2^binomial(k, 2)*(x*exp(-x + O(x^n)))^k/k!)));
      my(A=exp(-x + O(x*x^n))*exp(x + U + subst(B-x, x, x*(1-y) + R)));
      Vecrev(n!*polcoef(A, n), n + 1);
    }
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Oct 05 2019

Formula

Column-wise inverse binomial transform of A327369.
E.g.f.: exp(-x)*exp(x + U(x,y) + B(x*(1-y) + R(x,y))), where R(x,y) is the e.g.f. of A055302, U(x,y) is the e.g.f. of A055314 and B(x) + x is the e.g.f. of A059167. - Andrew Howroyd, Oct 05 2019

Extensions

Terms a(28) and beyond from Andrew Howroyd, Oct 05 2019
Previous Showing 101-110 of 153 results. Next