A361791
Expansion of 1/sqrt(1 - 4*x/(1+x)^5).
Original entry on oeis.org
1, 2, -4, -10, 30, 72, -238, -580, 1970, 4910, -16734, -42750, 144600, 379000, -1264700, -3402480, 11160730, 30828070, -99168820, -281279030, 885931600, 2580541580, -7948885910, -23779051760, 71572652480, 219906488302, -646332447086, -2039738985238, 5850898295170
Offset: 0
-
a[n_]:=(-1)^(n+1)Pochhammer[n,4]HypergeometricPFQ[{3/2,1-n,1+n/4,(5+n)/4, (6+n)/4, (7+n)/4}, {6/5,7/5,8/5,9/5,2}, 2^10/5^5]/12; Join[{1},Array[a,28]] (* Stefano Spezia, Jul 11 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^5))
-
a(n) = sum(k=0, n, (-1)^(n-k) * binomial(2*k,k) * binomial(n+4*k-1,n-k)) \\ Winston de Greef, Mar 24 2023
A361792
Expansion of 1/sqrt(1 - 4*x/(1+x)^6).
Original entry on oeis.org
1, 2, -6, -10, 66, 60, -750, -236, 8682, -2098, -100792, 80286, 1162458, -1603412, -13225764, 26767020, 147428498, -409582818, -1596563202, 5941802122, 16587101544, -83014131140, -161717252990, 1126247965980, 1411774064970, -14905602076350
Offset: 0
-
a[n_]:=(-1)^(n+1)Pochhammer[n,5]HypergeometricPFQ[{1-n,1+n/5,(6+n)/5, (7+n)/5, (8+n)/5, (9+n)/5}, {7/6,4/3,5/3,11/6,2}, 5^5/(2^4*3^6)]/60; Join[{1},Array[a,25]] (* Stefano Spezia, Jul 11 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^6))
A084608
Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1+2*x+3*x^2)^n.
Original entry on oeis.org
1, 1, 2, 3, 1, 4, 10, 12, 9, 1, 6, 21, 44, 63, 54, 27, 1, 8, 36, 104, 214, 312, 324, 216, 81, 1, 10, 55, 200, 530, 1052, 1590, 1800, 1485, 810, 243, 1, 12, 78, 340, 1095, 2712, 5284, 8136, 9855, 9180, 6318, 2916, 729, 1, 14, 105, 532, 2009, 5922, 13993, 26840, 41979
Offset: 0
Triangle begins:
1;
1, 2, 3;
1, 4, 10, 12, 9;
1, 6, 21, 44, 63, 54, 27;
1, 8, 36, 104, 214, 312, 324, 216, 81;
1, 10, 55, 200, 530, 1052, 1590, 1800, 1485, 810, 243;
-
a084608 n = a084608_list !! n
a084608_list = concat $ iterate ([1,2,3] *) [1]
instance Num a => Num [a] where
fromInteger k = [fromInteger k]
(p:ps) + (q:qs) = p + q : ps + qs
ps + qs = ps ++ qs
(p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs
* = []
-- Reinhard Zumkeller, Apr 02 2011
-
A084608:= func< n,k | (&+[Binomial(n, k-j)*Binomial(k-j, j)*2^(k-2*j)*3^j: j in [0..k]]) >;
[A084608(n,k): k in [0..2*n], n in [0..13]]; // G. C. Greubel, Mar 27 2023
-
f:= proc(n) option remember; expand((1+2*x+3*x^2)^n) end:
T:= (n,k)-> coeff(f(n), x, k):
seq(seq(T(n, k), k=0..2*n), n=0..10); # Alois P. Heinz, Apr 03 2011
-
row[n_] := (1+2x+3x^2)^n + O[x]^(2n+1) // CoefficientList[#, x]&; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Feb 01 2017 *)
-
for(n=0,10, for(k=0,2*n,t=polcoeff((1+2*x+3*x^2)^n,k,x); print1(t",")); print(" "))
-
def A084608(n,k): return sum(binomial(n,j)*binomial(n-j,k-2*j)*2^(k-2*j)*3^j for j in range(k//2+1))
flatten([[A084608(n,k) for k in range(2*n+1)] for n in range(14)]) # G. C. Greubel, Mar 27 2023
A360266
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * binomial(2*(n-2*k),n-2*k).
Original entry on oeis.org
1, 2, 6, 22, 82, 312, 1210, 4752, 18834, 75184, 301856, 1217604, 4930626, 20032052, 81615072, 333328532, 1364264250, 5594210292, 22977466864, 94517423444, 389316529512, 1605533230256, 6628467569292, 27393187077144, 113310732332274, 469101108803052
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n-2*k, k)*binomial(2*(n-2*k), n-2*k));
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x^2)))
A361812
Expansion of 1/sqrt(1 - 4*x*(1+x)^3).
Original entry on oeis.org
1, 2, 12, 62, 342, 1932, 11094, 64480, 378150, 2233304, 13263772, 79136844, 473969586, 2847911596, 17159547804, 103640073972, 627280131594, 3803643145596, 23102172930156, 140522319418164, 855880464524472, 5219168576004184, 31861229045809436
Offset: 0
-
a[n_]:=Binomial[2*n, n]HypergeometricPFQ[{(1-3*n)/4, (2-3*n)/4, 3*(1-n)/4, -3*n/4}, {1/3-n, 1/2-n, 2/3-n}, -2^6/3^3]; Array[a,23,0] (* Stefano Spezia, Jul 11 2024 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x)^3))
A084606
Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1+2x+2x^2)^n.
Original entry on oeis.org
1, 1, 2, 2, 1, 4, 8, 8, 4, 1, 6, 18, 32, 36, 24, 8, 1, 8, 32, 80, 136, 160, 128, 64, 16, 1, 10, 50, 160, 360, 592, 720, 640, 400, 160, 32, 1, 12, 72, 280, 780, 1632, 2624, 3264, 3120, 2240, 1152, 384, 64, 1, 14, 98, 448, 1484, 3752, 7448, 11776, 14896, 15008, 11872
Offset: 0
Rows:
{1},
{1,2,2},
{1,4,8,8,4},
{1,6,18,32,36,24,8},
{1,8,32,80,136,160,128,64,16},
{1,10,50,160,360,592,720,640,400,160,32},
{1,12,72,280,780,1632,2624,3264,3120,2240,1152,384,64},
-
for(n=0,15, for(k=0,2*n,t=polcoeff((1+2*x+2*x^2)^n,k,x); print1(t",")); print(" "))
A106258
Expansion of 1/sqrt(1-8x-8x^2).
Original entry on oeis.org
1, 4, 28, 208, 1624, 13024, 106336, 879232, 7338592, 61699456, 521753728, 4433024512, 37812715264, 323603221504, 2777262164992, 23893731463168, 206005885076992, 1779480850438144, 15396895523989504, 133420304211238912
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
CoefficientList[Series[1/Sqrt[1-8*x-8*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
RecurrenceTable[{a[0]==1,a[1]==4,a[n]==(4(2n-1)a[n-1]+8(n-1)a[n-2])/n}, a,{n,20}] (* Harvey P. Dale, Mar 13 2013 *)
A106259
Expansion of 1/sqrt(1-12x-12x^2).
Original entry on oeis.org
1, 6, 60, 648, 7344, 85536, 1014336, 12182400, 147702528, 1803907584, 22159733760, 273508669440, 3389106769920, 42134712606720, 525323149885440, 6565657319866368, 82235651779657728, 1031956779869798400
Offset: 0
-
CoefficientList[Series[1/Sqrt[1-12*x-12*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
A106260
Expansion of 1/sqrt(1-16x-16x^2).
Original entry on oeis.org
1, 8, 104, 1472, 21856, 333568, 5183744, 81590272, 1296426496, 20750839808, 334081306624, 5404163080192, 87763693060096, 1430025994108928, 23367175920287744, 382767375745810432, 6283401962864377856
Offset: 0
-
CoefficientList[Series[1/Sqrt[1-16*x-16*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
A106261
Expansion of 1/sqrt(1 - 20*x - 20*x^2).
Original entry on oeis.org
1, 10, 160, 2800, 51400, 970000, 18640000, 362800000, 7128700000, 141103000000, 2809273600000, 56197096000000, 1128614356000000, 22741607080000000, 459548117440000000, 9309106936000000000, 188980474087000000000
Offset: 0
-
CoefficientList[Series[1/Sqrt[1-20*x-20*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2013 *)
-
for(n=0,25, print1(sum(k=0,n,binomial(2*k,k)*binomial(k,n-k)*5^k), ", ")) \\ G. C. Greubel, Jan 31 2017
Comments