cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 146 results. Next

A337234 Odd composite integers m such that A006190(m)^2 == 1 (mod m).

Original entry on oeis.org

9, 33, 55, 63, 99, 119, 153, 231, 385, 399, 561, 649, 935, 981, 1023, 1071, 1179, 1189, 1199, 1441, 1595, 1763, 1881, 1953, 2001, 2065, 2255, 2289, 2465, 2703, 2751, 2849, 2871, 3519, 3599, 3655, 3927, 4059, 4081, 4187, 5015, 5151, 5559, 6061, 6119, 6215, 6273, 6431
Offset: 1

Views

Author

Ovidiu Bagdasar, Aug 20 2020

Keywords

Comments

If p is a prime, then A006190(p)^2 == 1 (mod p).
This sequence contains the odd composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2) = a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p) == 1 (mod p) whenever p is prime and b=-1.
For a=3, b=-1, U(n) recovers A006190(n) ("Bronze" Fibonacci numbers).

References

  • D. Andrica and O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2).

Programs

  • Mathematica
    Select[Range[3, 25000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 3]*Fibonacci[#, 3] - 1, #] &]

A327654 Composite numbers k coprime to 13 such that k divides A006190(k) - Kronecker(13,k).

Original entry on oeis.org

4, 8, 9, 119, 399, 649, 1023, 1179, 1189, 1199, 1881, 2703, 3519, 4081, 4187, 5151, 7055, 7361, 10349, 12871, 13833, 14041, 15519, 16109, 18639, 22593, 23479, 24769, 26937, 28421, 29007, 31631, 34111, 34997, 38503, 41441, 44671, 48577, 50545, 51711, 53823, 56279, 57407, 58081, 59081
Offset: 1

Views

Author

Jianing Song, Sep 20 2019

Keywords

Comments

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n) = m*x(n-1) + x(n-2) for k >= 2. For primes p, we have (a) p divides x(p-((m^2+4)/p)); (b) x(p) == ((m^2+4)/p) (mod p), where (D/p) is the Kronecker symbol. This sequence gives composite numbers k such that gcd(k, m^2+4) = 1 and that a condition similar to (b) holds for k, where m = 3.
If k is not required to be coprime to m^2 + 4 (= 13), then there are 352 such k <= 10^5, and 1457 such k <= 10^6, while there are only 54 terms <= 10^5 and 148 terms <= 10^6 in this sequence.

Examples

			A006190(8) = 3927 == Kronecker(13,8) (mod 8), so 8 is a term.
		

Crossrefs

m m=1 m=2 m=3
k | x(k-Kronecker(m^2+4,k))* A081264 U A141137 A327651 A327653
k | x(k)-Kronecker(m^2+4,k) A049062 A099011 this seq
* k is composite and coprime to m^2 + 4.
Cf. A006190, A011583 ({Kronecker(13,n)}).

Programs

  • PARI
    seqmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2]
    isA327654(n)=!isprime(n) && seqmod(n, n)==kronecker(13,n) && gcd(n,13)==1 && n>1

A337235 Even composite integers m such that A006190(m)^2 == 1 (mod m).

Original entry on oeis.org

4, 8, 16, 68, 1208, 1424, 3056, 3824, 3928, 20912, 52174, 63716, 88708, 123148, 161872, 582224, 887566, 17083292, 18900412, 34648888, 39991684, 44884912, 51390736, 103170448, 107825236, 132238514, 279900272, 686071244, 769252508, 3251623346, 3358311986, 3535011826
Offset: 1

Views

Author

Ovidiu Bagdasar, Aug 20 2020

Keywords

Comments

If p is a prime, then A006190(p)^2 == 1 (mod p).
This sequence contains the even composite integers for which the congruence holds.
The generalized Lucas sequence of integer parameters (a,b) defined by U(n+2) = a*U(n+1)-b*U(n) and U(0)=0, U(1)=1, satisfies the identity U^2(p) == 1 (mod p) whenever p is prime and b=-1,1.
For a=3, b=-1, U(n) recovers A006190(n) ("Bronze" Fibonacci numbers).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer (to appear, 2020).

Crossrefs

Cf. A337231 (a=1, odd terms), A337232 (a=1, even terms), A337233 (a=2), A337234 (a=3, odd terms).

Programs

  • Mathematica
    Select[Range[3, 25000, 2], CompositeQ[#] && Divisible[Fibonacci[#, 5]*Fibonacci[#, 5] - 1, #] &]

Extensions

More terms from Amiram Eldar, Aug 21 2020
a(18)-a(32) from Daniel Suteu, Aug 29 2020

A340119 Odd composite integers m such that A006190(2*m-J(m,13)) == 1 (mod m), where J(m,13) is the Jacobi symbol.

Original entry on oeis.org

9, 27, 63, 81, 99, 119, 153, 243, 567, 649, 729, 759, 891, 903, 1071, 1189, 1377, 1431, 1539, 1763, 1881, 1953, 2133, 2187, 3599, 3897, 4187, 4585, 5103, 5313, 5559, 5589, 5819, 6561, 6681, 6831, 6993, 8019, 8127, 8829, 8855, 9639, 9999, 10611, 11135, 11691, 11961
Offset: 1

Views

Author

Ovidiu Bagdasar, Dec 28 2020

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(2*p-J(p,D)) == 1 (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4. The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a. Here b=-1, a=3, D=13 and k=2, while U(m) is A006190(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A006190, A071904, A081264 (a=1, b=-1, k=1), A327653 (a=3, b=-1, k=1).
Cf. A340118 (a=1, b=-1, k=2), A340120 (a=5, b=-1, k=2), A340121 (a=7, b=-1, k=2).

Programs

  • Mathematica
    Select[Range[3, 12000, 2], CoprimeQ[#, 13] && CompositeQ[#] && Divisible[Fibonacci[2*#-JacobiSymbol[#, 13], 3] - 1, #] &]

A209493 Indices of primes in sequence A006190.

Original entry on oeis.org

2, 5, 11, 17, 61, 103, 167, 193, 293, 643, 647, 911, 11243, 29437, 55021, 80141
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 09 2012

Keywords

Comments

Index must be prime. The indices greater than 293 yield probable primes.

Crossrefs

Programs

  • Mathematica
    seq=RecurrenceTable[{a[n]==3*a[n-1]+a[n-2], a[1]==1, a[2]==3}, a, {n, 1000}]; Select[Range[1000], PrimeQ[seq[[#]]]&]

Extensions

a(14)-a(15) from Vaclav Kotesovec, Sep 08 2013
a(16) from Michael S. Branicky, Nov 03 2024

A340236 Odd composite integers m such that A006190(3*m-J(m,13)) == 3 (mod m), where J(m,13) is the Jacobi symbol.

Original entry on oeis.org

9, 119, 121, 187, 327, 345, 649, 705, 1003, 1089, 1121, 1189, 1881, 2091, 2299, 3553, 4187, 5461, 5565, 5841, 6165, 6485, 7107, 7139, 7145, 7467, 7991, 8321, 8449, 11041, 12705, 12871, 13833, 14041, 16109, 16851
Offset: 1

Views

Author

Ovidiu Bagdasar, Jan 01 2021

Keywords

Comments

The generalized Lucas sequences of integer parameters (a,b) defined by U(m+2)=a*U(m+1)-b*U(m) and U(0)=0, U(1)=1, satisfy U(3*p-J(p,D)) == a (mod p) whenever p is prime, k is a positive integer, b=-1 and D=a^2+4. The composite integers m with the property U(k*m-J(m,D)) == U(k-1) (mod m) are called generalized Lucas pseudoprimes of level k- and parameter a.
Here b=-1, a=3, D=13 and k=3, while U(m) is A006190(m).

References

  • D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.
  • D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).
  • D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

Crossrefs

Cf. A006190, A071904, A327653 (a=3, b=-1, k=1), A340119 (a=3, b=-1, k=2).
Cf. A340235 (a=1, b=-1, k=3), A340237 (a=5, b=-1, k=3), A340238 (a=7, b=-1, k=3).

Programs

  • Mathematica
    Select[Range[3, 15000, 2], CoprimeQ[#, 13] && CompositeQ[#] && Divisible[Fibonacci[3*#-JacobiSymbol[#, 13], 3] - 3, #] &]

A253247 Pisano period of A006190(n^2) divided by Pisano period of A006190(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 1, 7, 8, 9, 5, 11, 4, 13, 7, 5, 16, 17, 9, 19, 10, 21, 11, 23, 8, 25, 13, 27, 7, 29, 5, 31, 32, 33, 17, 35, 36, 37, 19, 39, 40, 41, 7, 43, 11, 45, 23, 47, 16, 49, 25, 51, 26, 53, 27, 55, 14, 57, 29, 59, 10, 61, 31, 63, 64, 65, 11, 67, 17, 69, 35, 71, 72
Offset: 1

Views

Author

Eric Chen, Apr 09 2015

Keywords

Comments

For all n, a(n)|n.
Conjecture: a(n) = 1 only for n = 1 and 6. (This conjecture is true if and only if the generalized Wall's conjecture to A006190 is true.)
If there exists any prime p such that A175182(p^2) = A175182(p), then the conjecture fails.
For any prime p, these three statements are equivalent:
(1) A175182(p^2) = A175182(p).
(2) A006190(p-(p|13)) = 3 (mod p^2).
(3) A006497(p) = 1 (mod p^2).
Since A175182(241^2) = A175182(241) = 484, so the prime 241 is a Wall-Sun-Sun prime to A006190 (Lucas (P, Q) = (3, -1)) and no others < 10^8, so the conjecture is true for all primes < 10^8 except 241.
All of Wall's theorems are true for A175182. For example, let P(n) = A175182(n), p and q are primes, then P(pq) = lcm(P(p), P(q)), and for every prime p, P(p)|(p-1) if (p|13) = 1, P(p)|(2p+2) if (p|13) = -1 (P(13) = 52, which if divisible by 13), while (p|13) is the Legendre symbol, and the fixed points of A175182 are 1, 6, and 12*13^k, k>0.

Crossrefs

Programs

  • Maple
    F := proc(k, n) option remember; if n <= 1 then n; else k*procname(k, n-1)+procname(k, n-2) ; end if; end proc:
    Pper := proc(k, m) local cha, zer, n, fmodm ; cha := [] ; zer := [] ; for n from 0 do fmodm := F(k, n) mod m ; cha := [op(cha), fmodm] ; if fmodm = 0 then zer := [op(zer), n] ; end if; if nops(zer) = 5 then break; end if; end do ; if [op(1..zer[2], cha) ] = [ op(zer[2]+1..zer[3], cha) ] and [op(1..zer[2], cha)] = [ op(zer[3]+1..zer[4], cha) ] and [op(1..zer[2], cha)] = [ op(zer[4]+1..zer[5], cha) ] then return zer[2] ; elif [op(1..zer[3], cha) ] = [ op(zer[3]+1..zer[5], cha) ] then return zer[3] ; else return zer[5] ; end if; end proc:
    k := 3 ; seq( Pper(k, m^2) div Pper(k, m), m=1..300) ;
  • Mathematica
    A006190[n_] := Fibonacci[n, 3];
    A175182[n_] := Module[{k=1}, While[Mod[A006190[k], n] != 0 || Mod[A006190[k+1]-1, n] != 0, k++]; k];
    Table[A175182[n^2] / A175182[n], {n, 72}] (* corrected by Jason Yuen, Jun 28 2025 *)
  • PARI
    fibmod(n, m)=((Mod([3, 1; 1, 0], m))^n)[1, 2]
    entry_p(p)=my(k=1, c=Mod(1, p), o); while(c, [o, c]=[c, 3*c+o]; k++); k
    entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e8 && f[i, 1] != 241, entry_p(f[i, 1]^f[i, 2]), entry_p(f[i, 1])*f[i, 1]^(f[i, 2] - 1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<
    				

Formula

a(n) = A175182(n^2) / A175182(n).

A253807 Primitive part of A006190(n), n >= 1.

Original entry on oeis.org

1, 3, 10, 11, 109, 12, 1189, 119, 1297, 131, 141481, 118, 1543321, 1429, 15445, 14159, 183642229, 1299, 2003229469, 14041, 1837837, 170039, 238367471761, 14158, 23854956949, 1854841, 2186871697, 1670761, 309400794703549
Offset: 1

Views

Author

Wolfdieter Lang, Jan 19 2015

Keywords

Comments

A006190(n) = Product_{k divides n} a(k), n >= 1.

Crossrefs

Programs

  • Mathematica
    (* b = A006190 *) b[0] = 0; b[1] = 1; b[n_] := b[n] = 3*b[n-1] + b[n-2]; a[n_] := Product[b[d]^MoebiusMu[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jan 20 2015 *)

Formula

a(n) = ((3-sqrt(13))/2)^phi(n)*cyclotomic(n, -(11 - 3*sqrt13)/2) for n >= 1 and a(1) = 1, where phi is Euler's totient A000010 and the coefficient table for the cyclotomic polynomials is given in A013595.
a(n) = Product_{d|n} A006190(d)^mu(n/d), where mu = A008683, n >= 1.

A270997 Numbers k such that k | A006190(k-1).

Original entry on oeis.org

1, 3, 10, 17, 23, 29, 33, 43, 53, 61, 79, 101, 103, 107, 113, 127, 131, 139, 157, 173, 179, 181, 191, 199, 211, 233, 251, 257, 263, 269, 277, 283, 311, 313, 337, 347, 367, 373, 385, 389, 419, 433, 439, 443, 467, 491, 503, 521, 523, 547, 561, 563, 569, 571, 599, 601, 607, 641, 647, 649, 653, 659
Offset: 1

Views

Author

Altug Alkan, Mar 28 2016

Keywords

Comments

This sequence appears to generate many prime numbers.
The first few composite terms in this sequence are 10, 33, 385, 561, 649, ...
Contains all members of A038883 except 13. - Robert Israel, Jun 03 2019
That is, contains all primes which are congruent to +-1, +-3 or +-4 (mod 13). - M. F. Hasler, Feb 16 2022

Examples

			10 is a term because A006190(9) = 12970 is divisible by 10.
		

Crossrefs

Programs

  • Maple
    M:= <<3,1>|<1,0>>:
    filter:= proc(n) uses LinearAlgebra[Modular];
      local A;
      A:= Mod(n,M,integer);
      MatrixPower(n,A,n-1)[1,2]=0
    end proc:
    filter(1):= true:
    select(filter, [$1..659]); # Robert Israel, Jun 03 2019
  • Mathematica
    nn = 660; s = LinearRecurrence[{3, 1}, {0, 1}, nn]; Select[Range@ nn, Divisible[s[[#]], #] &](* Michael De Vlieger, Mar 28 2016, after Harvey P. Dale at A006190 *)
  • PARI
    a006190(n) = ([1, 3; 1, 2]^n)[2, 1];
    for(n=1, 1e3, if(Mod(a006190(n-1), n) == 0, print1(n, ", ")));

A308948 a(n) = A006190(A322907(n)+1) mod n.

Original entry on oeis.org

0, 1, 1, 1, 3, 1, 6, 5, 1, 3, 10, 1, 8, 13, 4, 9, 16, 1, 18, 9, 13, 21, 1, 13, 18, 5, 1, 13, 12, 19, 30, 17, 10, 33, 6, 1, 31, 37, 25, 29, 32, 13, 1, 21, 19, 1, 46, 25, 48, 43, 16, 25, 1, 1, 21, 41, 37, 17, 58, 49, 1, 61, 55, 33, 18, 43, 66, 33, 1, 41, 70, 37
Offset: 1

Views

Author

Jianing Song, Jul 02 2019

Keywords

Comments

A322907(n) is the smallest k > 0 such that n divides A006190(k).
Let M = [{3, 1}, {1, 0}], I = [{1, 0}, {0, 1}] is the 2 X 2 identity matrix, then A322907(n) is the smallest k > 0 such that M^k == r*I (mod n) for some r such that 0 <= r < n, and a(n) gives the value r.
A322906(n) is the multiplicative order of a(n) modulo n, which can only take value 1, 2 or 4.

Examples

			For n = 7, {A006190(n) mod 7 : n > 0} = {1, 3, 3, 5, 4, 3, 6, 0, 6, ...}, so a(7) = 6. Also, A322907(7) = 8, and M^8 mod 7 = [{6, 0}, {0, 6}], so a(7) = 6.
		

Crossrefs

Similar sequences: A217036, A308947.

Programs

  • Mathematica
    a[n_] := For[k = 1, True, k++, If[Divisible[Fibonacci[k, 3], n], Return[ Mod[Fibonacci[k + 1, 3], n]]]];
    Array[a, 100] (* Jean-François Alcover, Jul 05 2019 *)
  • PARI
    a(n) = my(M=[3, 1; 1, 0]); for(k=1, 12*n/7, if((Mod(M,n)^k)[2,1]==0, return(lift((Mod(M,n)^k)[1,1]))))

Formula

Also a(n) = A006190(A322907(n)-1) mod n.
a(2^e) = 1 if e = 1, 2, 2^(e-1) + 1 if e >= 3; a(p^e) = a(p)^(p^(e-1)) mod p^e for odd primes p.
For odd primes p, a(p^e) = 1 if and only if A322907(p) == 2 (mod 4); a(p^e) = p^e - 1 if and only if 4 divides A322907(p).
Previous Showing 11-20 of 146 results. Next