cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A161856 Triangle read by rows in which row n lists the coefficients of the interpolating polynomial for its divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 0, 2, 1, 6, 1, 1, 1, 1, 1, 2, 4, 1, 1, 2, 0, 1, 10, 1, 1, 0, 0, 1, 1, 1, 12, 1, 1, 4, -2, 1, 2, 0, 8, 1, 1, 1, 1, 1, 1, 16, 1, 1, 0, 2, -4, 12, 1, 18, 1, 1, 1, -2, 7, -11, 1, 2, 2, 8, 1, 1, 8, -6, 1, 22, 1, 1, 0, 0, 1, -3, 8, -12, 1, 4, 16, 1, 1, 10, -8, 1, 2, 4, 8, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 20 2009

Keywords

Comments

EDP(n,x) = SUM(a(A006218(n)-1+i)*A007318(x,i-1): 1<=i<=A000005(n)) is the interpolating polynomial for the divisors of n, see also A161700;
A000005(n) = length of n-th row, i.e. same length as n-th row in A027750;
sum of n-th row, n>1: A161857(n) = SUM(a(A006218(n-1)+i): 1<=i<=A000005(n));
a(A006218(n)+1) = 1.

Examples

			1; 1,1; 1,2; 1,1,1; 1,4; 1,1,0,2; 1,6; 1,1,1,1; 1,2,4; ... .
		

Crossrefs

A058393 A square array based on 1^n (A000012) with each term being the sum of 2 consecutive terms in the previous row.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 2, 3, 1, 0, 1, 2, 4, 4, 1, 1, 1, 2, 4, 7, 5, 1, 0, 1, 2, 4, 8, 11, 6, 1, 1, 1, 2, 4, 8, 15, 16, 7, 1, 0, 1, 2, 4, 8, 16, 26, 22, 8, 1, 1, 1, 2, 4, 8, 16, 31, 42, 29, 9, 1, 0, 1, 2, 4, 8, 16, 32, 57, 64, 37, 10, 1, 1, 1, 2, 4, 8, 16, 32, 63, 99, 93, 46, 11, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Nov 24 2000

Keywords

Comments

Changing the formula by replacing T(0,2n)=T(1,n) by T(0,2n)=T(m,n) for some other value of m, would make the generating function change to coefficient of x^n in expansion of (1+x)^k/(1-x^2)^m. This would produce A058394, A058395, A057884, (and effectively A007318).

Examples

			Rows are (1,0,1,0,1,0,1,...), (1,1,1,1,1,1,...), (1,2,2,2,2,2,...), (1,3,4,4,4,...) etc.
		

Crossrefs

Rows are A000035 (A000012 with zeros), A000012, A040000 etc. Columns are A000012, A001477, A000124, A000125, A000127, A006261, A008859, A008860, A008861, A008862, A008863 etc. Diagonals include A000079, A000225, A000295, A002662, A002663, A002664, A035038, A035039, A035040, A035041, etc. The triangles A008949, A054143 and A055248 also appear in the half of the array which is not powers of 2.

Formula

T(n, k)=T(n-1, k-1)+T(n, k-1) with T(0, k)=1, T(1, 1)=1, T(0, 2n)=T(1, n) and T(0, 2n+1)=0. Coefficient of x^n in expansion of (1+x)^k/(1-x^2).

A374378 Iterated rascal triangle R2: T(n,k) = Sum_{m=0..2} binomial(n-k,m)*binomial(k,m).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 19, 15, 6, 1, 1, 7, 21, 31, 31, 21, 7, 1, 1, 8, 28, 46, 53, 46, 28, 8, 1, 1, 9, 36, 64, 81, 81, 64, 36, 9, 1, 1, 10, 45, 85, 115, 126, 115, 85, 45, 10, 1, 1, 11, 55, 109, 155, 181, 181, 155, 109, 55, 11, 1
Offset: 0

Views

Author

Kolosov Petro, Jul 06 2024

Keywords

Comments

Triangle T(n,k) is the second triangle R2 among the rascal-family triangles; A374452 is triangle R3; A077028 is triangle R1.
Triangle T(n,k) equals Pascal's triangle A007318 through row 2i+1, i=2 (i.e., row 5).
Triangle T(n,k) equals Pascal's triangle A007318 through column i, i=2 (i.e., column 2).

Examples

			Triangle begins:
--------------------------------------------------
k=     0   1   2   3    4    5    6   7   8   9 10
--------------------------------------------------
n=0:   1
n=1:   1   1
n=2:   1   2   1
n=3:   1   3   3   1
n=4:   1   4   6   4    1
n=5:   1   5  10  10    5    1
n=6:   1   6  15  19   15    6    1
n=7:   1   7  21  31   31   21    7   1
n=8:   1   8  28  46   53   46   28   8   1
n=9:   1   9  36  64   81   81   64  36   9   1
n=10:  1  10  45  85  115  126  115  85  45  10  1
		

Crossrefs

Programs

  • Mathematica
    t[n_, k_]:=Sum[Binomial[n - k, m]*Binomial[k, m], {m, 0, 2}]; Column[Table[t[n, k], {n, 0, 12}, {k, 0, n}], Center]

Formula

T(n,k) = 1 + k*(n-k) + (1/4)*(k-1)*k*(n-k-1)*(n-k).
Row sums give A006261(n).
Diagonal T(n+1, n) gives A000027(n).
Diagonal T(n+2, n) gives A000217(n).
Diagonal T(n+3, n) gives A005448(n).
Diagonal T(n+4, n) gives A056108(n).
Diagonal T(n+5, n) gives A212656(n).
Column k=3 difference binomial(n+6, 3) - T(n+6, 3) gives C(n+3,3)=A007318(n+3,3).
Column k=4 difference binomial(n+7, 4) - T(n+7, 4) gives fifth column of (1,4)-Pascal triangle A095667.
G.f.: (1 + 3*x^4*y^2 - (2*x + 3*x^3*y)*(1 + y) + x^2*(1 + 5*y + y^2))/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Jul 09 2024

A219615 a(n) = Sum_{k=0..12} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8191, 16369, 32647, 64839, 127858, 249528, 480492, 910596, 1695222, 3096514, 5546382, 9740686, 16777216, 28354132, 47050564, 76717268, 123012781, 194129627, 301766029, 462411533, 699030226, 1043243132
Offset: 0

Views

Author

Mokhtar Mohamed, Nov 23 2012

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n+1 into thirteen or fewer parts.
a(n) is the sum of the first thirteen terms in the n-th row of Pascal's triangle.

Examples

			a(13)= 8191 because there are (2^13) -1 compositions of 14 into thirteen or fewer parts. When 1<= n <= 12, for n=5, a(5) = 2*a(4) = 2*16 = 32. For n=12, a(12) = 2*a(11)= 2*2048 = 4096. When n>12, for n=13, a(13) = 2*a(12) - binomial(12,12) = 2*4096 - 1 = 8191. For n = 15, a(15) = 2*a(14) - binomial(14,12) = 2*16369 - 91 = 32738 - 91 = 32647.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k], {k, 0, 12}], {n, 0, 40}] (* T. D. Noe, Nov 27 2012 *)
    LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{1,2,4,8,16,32,64,128,256,512,1024,2048,4096},40] (* Harvey P. Dale, Nov 29 2012 *)
  • PARI
    a(n)=sum(k=1,12,binomial(n,k)) \\ Charles R Greathouse IV, Nov 27 2012

Formula

a(n) = (n^12 - 54n^11 + 1397n^10 - 21450n^9 + 218823n^8 - 1508562n^7 + 7374191n^6 - 23551110n^5 + 58206676n^4 - 48306984n^3 + 173699712n^2 + 312888960n)/479001600. - Charles R Greathouse IV, Nov 27 2012
a(0)=1, a(1)=2, a(2)=4, a(3)=8, a(4)=16, a(5)=32, a(6)=64, a(7)=128, a(8)=256, a(9)=512, a(10)=1024, a(11)=2048, a(12)=4096, a(n)= 13*a(n-1)- 78*a(n-2)+286*a(n-3)-715*a(n-4)+1287*a(n-5)-1716*a(n-6)+ 1716*a(n-7)- 1287*a(n-8)+715*a(n-9)-286*a(n-10)+78*a(n-11)-13*a(n-12)+a(n-13). - Harvey P. Dale, Nov 29 2012

Extensions

Sequence corrected and extended by T. D. Noe, Nov 26 2012
Definition corrected by Harvey P. Dale, Nov 29 2012

A219676 a(n) = Sum_{k=0..13} binomial(n, k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16383, 32752, 65399, 130238, 258096, 507624, 988116, 1898712, 3593934, 6690448, 12236830, 21977516, 38754732, 67108864, 114159428, 190876696, 313889477, 508019104, 809785133, 1272196666
Offset: 0

Views

Author

Mokhtar Mohamed, Nov 24 2012

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n+1 into fourteen or fewer parts.
a(n) is the sum of the first fourteen terms in the n-th row of Pascal's triangle.

Examples

			a(14) = 16383 because there are 2^14 = 16384 compositions of 15 into any size parts but one of the compositions (1 + 1 + ... + 1 = 15) has more than fourteen parts.
When 1 <= n <= 13, a(7) = 2*a(6) = 2*64= 128, a(13) = 2*a(12) = 2*4096 = 8192.
When n > 13, a(14) = 2*a(13) - C(13, 13) = 2*8192 - 1 = 16383, a(15) = 2*a(14) - C(14, 13) = 2*16383 - 14 = 32766 - 14 = 32752.
		

Crossrefs

Programs

  • Maple
    f:= n -> add(binomial(n,k),k=0..13):
    map(f, [$0..100]); # Robert Israel, Mar 14 2018
  • Mathematica
    Table[Sum[Binomial[n, k], {k, 0, 13}], {n, 0, 40}] (* T. D. Noe, Nov 26 2012 *)

Formula

a(n) = Sum_{k=1..7} binomial(n+1, 2k-1).
a(n) = 1 +(n^13 -65*n^12 +2015*n^11 -37609*n^10 +470613*n^9 -4081935*n^8 +25378925*n^7 -110205667*n^6 +351042406*n^5 -657328100*n^4 +1303568760*n^3 +771653376*n^2 +4546558080*n)/13!. - corrected by Mokhtar Mohamed, Dec 01 2012
G.f.: (1 - 12*x + 67*x^2 - 230*x^3 + 541*x^4 - 920*x^5 + 1163*x^6 - 1106*x^7 + 791*x^8 - 420*x^9 + 161*x^10 - 42*x^11 + 7*x^12)/(1-x)^14.
a(n) = 2*a(n-1), for 1 <= n <= 13, with a(0) = 1, a(n) = 2*a(n-1) - C(n-1, 13), for n > 13.

Extensions

Corrected and extended by T. D. Noe, Nov 26 2012

A209257 A musically inspired Titius-Bode-like sequence based on the geometric division of 4- and 5-dimensional space: Z_(n+1) = 3 * (C(n-1, 0) + C(n-1, 1) + C(n-1, 2) + C(n-1, 3) + C(n-1, 4) + C(n-1, 5)*A059620(n+6)) + 4.

Original entry on oeis.org

4, 7, 10, 16, 28, 52, 97, 193, 301, 493, 1150, 1162, 3076, 2386, 3283, 10423, 5827, 20659, 9646, 37852, 15112, 18592, 83692, 27331, 133660, 38857, 45832, 251050, 62566, 367318, 83527, 523315, 109375, 124351, 852826, 158872, 1152508, 200140, 223561, 1754809
Offset: 0

Views

Author

Raphie Frank, Jan 14 2013

Keywords

Comments

The classical Titius-Bode version of this sequence is given in A003461.
C(n, 0) + C(n, 1) + C(n, 2) + C(n, 3) + C(n, 4) = A000127(n) = A059173(n+1)/2.
C(n, 0) + C(n, 1) + C(n, 2) + C(n, 3) + C(n, 4) + C(n, 5) = A006261(n) = A059174(n+1)/2.
Where planetary and dwarf-planetary distances from the Sun at semi-major axis are expressed in astronomical units/10, then compare the following (noting that the running correlation coefficient, r, trends upwards as the population size increases):
n = 0, Mercury @ semi-major = 3.8710 vs. 4.0 --> 96.78%.
n = 1, Venus @ semi-major = 7.2333 vs. 7.0 --> 103.33%.
n = 2, Earth @ semi-major = 10.0000 vs. 10.0 --> 100.00%, r = 0.998430.
n = 3, Mars @ semi-major = 15.2368 vs. 16.0 --> 95.23%, r = 0.998356.
n = 4, Ceres @ semi-major = 27.654 vs. 28.0 --> 98.76%, r = 0.999412.
n = 5, Jupiter @ semi-major = 52.0427 vs. 52.0 --> 100.08%, r = 0.999809.
n = 6, Saturn @ semi-major = 95.8202 vs. 97.0 --> 98.78%, r = 0.999937.
n = 7, Uranus @ semi-major = 192.2941 vs. 193.0 --> 99.63%, r = 0.999981.
n = 8, Neptune @ semi-major = 301.0366 vs. 301.0 --> 100.01%, r = 0.999990.
The correspondence between this sequence and planetary distances breaks down subsequent to Neptune unless one adopts the conceit of considering the outer four dwarf planets -- Pluto, Haumea, MakeMake and Eris -- as one unit occupying one "planetary band" (note that Eris @ perihelion is inside the Kuiper Belt). Then:
n = 9, Pluto/Haumea/MakeMake/Eris @ semi-major ~ 490.492 average vs. 493.0 --> 99.49%, r = 0.999994.
Empirical source: Wikipedia planet pages as of Jan 14 2013.
This sequence originated as part of an attempt to compare and contrast the "good" numerology of Johann Balmer to the "bad" numerology of Titius-Bode. Coincidentally, (Totient(C(31, 0) + C(31, 1) + C(31, 2) + C(31, 3) + C(31, 4)))/10^11 equals 3.6456*10^-7, in meters, the Balmer constant as given by Johann Balmer in 1885.

Examples

			Z_1 = 3*((1 - 1 +  1 -  1 +  1) + (-1 * 1)) + 4 =   4,
Z_2 = 3*((1 + 0 +  0 +  0 +  0) +  (0 * 0)) + 4 =   7,
Z_3 = 3*((1 + 1 +  0 +  0 +  0) +  (0 * 0)) + 4 =  10,
Z_4 = 3*((1 + 2 +  1 +  0 +  0) +  (0 * 1)) + 4 =  16,
Z_5 = 3*((1 + 3 +  3 +  1 +  0) +  (0 * 0)) + 4 =  28,
Z_6 = 3*((1 + 4 +  6 +  4 +  1) +  (0 * 1)) + 4 =  52,
Z_7 = 3*((1 + 5 + 10 + 10 +  5) +  (1 * 0)) + 4 =  97,
Z_8 = 3*((1 + 6 + 15 + 20 + 15) +  (6 * 1)) + 4 = 193,
Z_9 = 3*((1 + 7 + 21 + 35 + 35) + (21 * 0)) + 4 = 301.
		

Crossrefs

Programs

  • Magma
    [3*(Binomial(n-1,0) + Binomial(n-1,1) + Binomial(n-1,2) + Binomial(n-1,3) + Binomial(n-1,4) + Binomial(n-1,5)*(Floor((5*(n+6) + 7)/12) - Floor((5*(n+6)+2)/12))) + 4: n in [0..30]]; // G. C. Greubel, Jan 07 2018
  • Mathematica
    Z[n_]:= 3*(Binomial[n - 1, 0] + Binomial[n - 1, 1] + Binomial[n - 1, 2] + Binomial[n - 1, 3] + Binomial[n - 1, 4] + Binomial[n - 1, 5]*(Floor[(5 (n + 6) + 7)/12] - Floor[(5 (n + 6) + 2)/12])) + 4; Table[Z[n], {n, 0, 50}] (* G. C. Greubel, Jan 07 2018 *)
  • PARI
    {z(n) = 3*(binomial(n-1,0) + binomial(n-1,1) + binomial(n-1,2) + binomial(n-1,3) + binomial(n-1,4) + binomial(n-1,5)*(floor((5*(n+6) + 7)/12) - floor((5*(n+6)+2)/12))) + 4};
    for(n=0,30, print1(z(n), ", ")) \\ G. C. Greubel, Jan 07 2018
    

Formula

Z_(n+1) = 3 * (C(n-1, 0) + C(n-1, 1) + C(n-1, 2) + C(n-1, 3) + C(n-1, 4) + C(n-1, 5)*(floor((5*(n+6)+7)/12) - floor((5*(n+6)+2)/12))) + 4.

Extensions

a(18) corrected by G. C. Greubel, Jan 07 2018

A220051 Sum_{k=0..14} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32767, 65519, 130918, 261156, 519252, 1026876, 2014992, 3913704, 7507638, 14198086, 26434916, 48412432, 87167164, 154276028, 268435456, 459312152, 773201629, 1281220733, 2091005866
Offset: 0

Views

Author

Mokhtar Mohamed, Dec 03 2012

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n+1 into fifteen or fewer parts.
a(n) = sum(binomial(n+1,2k), for k = 0..7).
a(n) is the sum of the first fifteen terms in the n-th row of Pascal's triangle.

Examples

			a(15) = 32767 because there are 2^15 = 32768 compositions of 16 into any size parts but one of the compositions (1 + 1 + ... + 1 = 16) has more than fifteen parts.
When 1 <= n <= 14, for n=10, a(10) = 2*a(9) = 2*512 = 1024. For n=14, a(14) = 2*a(13) = 2*8192 = 16384.
When n > 14, for n = 15, a(15) = 2*a(14) -C(14,14) = 2*16384 -1 = 32767. For n=20, a(20) = 2*a(19) -C(19,14) = 2*519252 -11626 = 1038504 -11626 = 1026876.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k],{k,0,14}],{n,0,33}] (* Indranil Ghosh, Feb 22 2017 *)
    NestList[{#1 + 1, 2 #2 - Boole[#1 >= 14] Binomial[#1, 14]} & @@ # &, {0, 1}, 33][[All, -1]] (* Michael De Vlieger, Feb 22 2017 *)
  • PARI
    a(n)=sum(k=0,14,binomial(n,k)) \\ Indranil Ghosh, Feb 23 2017

Formula

a(n) = 1 + (n^14 - 77*n^13 + 2821*n^12 - 6288*n^11 + 947947*n^10 - 10081071*n^9 + 77889383*n^8 - 435638203*n^7 + 1793239448*n^6 - 5043110072*n^5 + 1111159696*n^4 - 8346754416*n^3 + 30605906304*n^2 + 57424792320*n)/14!.
G.f.: (1 - 13x + 79x^2 - 297x^3 + 771x^4 - 1461x^5 + 2083x^6 - 2269x^7 + 1897x^8 - 1211x^9 + 581x^10 - 203x^11 + 49x^12 - 7x^13 + x^14)/(1-x)^15.
a(n) = 2*a(n-1), for 1 <= n <= 14, with a(0) = 1, a(n) = 2*a(n-1) - C(n-1,14), for n> 14.

A373005 Array read by ascending antidiagonals: A(n,k) is the maximum possible cardinality of a set of points of diameter at most k-1 in {0,1}^n.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 2, 2, 0, 0, 1, 2, 3, 2, 1, 0, 1, 2, 4, 4, 2, 2, 0, 1, 2, 5, 6, 4, 2, 1, 0, 1, 2, 6, 8, 7, 4, 2, 0, 0, 1, 2, 7, 10, 11, 8, 4, 2, 1, 0, 1, 2, 8, 12, 16, 14, 8, 4, 2, 2, 0, 1, 2, 9, 14, 22, 22, 15, 8, 4, 2, 1, 0, 1, 2, 10, 16, 29, 32, 26, 16, 8, 4, 2, 0
Offset: 0

Views

Author

Stefano Spezia, May 19 2024

Keywords

Comments

A(n,k) is also the size of the Hamming ball in {0,1}^n of radius (k-1)/2 if k is odd and of the union of two Hamming balls in {0,1}^n of radius k/2-1 whose centers are of Hamming distance 1 if k is even.

Examples

			The array begins:
  1, 1, 2, 1,  0,  1,  2,  1, ...
  0, 1, 2, 2,  2,  2,  2,  2, ...
  0, 1, 2, 3,  4,  4,  4,  4, ...
  0, 1, 2, 4,  6,  7,  8,  8, ...
  0, 1, 2, 5,  8, 11, 14, 15, ...
  0, 1, 2, 6, 10, 16, 22, 26, ...
  0, 1, 2, 7, 12, 22, 32, 42, ...
  0, 1, 2, 8, 14, 29, 44, 64, ...
  ...
		

Crossrefs

Cf. A000007 (k=0), A000012 (k=1), A000124 (k=5), A000125 (k=7), A005843 (k=4), A006261 (k=11), A007395 (k=2), A008859 (k=13), A011782 (main diagonal), A014206, A046127 (k=8), A059173, A059174, A130130 (n=1), A158411 (n=2), A373006 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=If[OddQ[k],Sum[Binomial[n,i],{i,0,(k-1)/2}], Binomial[n-1,k/2-1]+Sum[Binomial[n,i],{i,0,k/2-1}]]; Table[A[n-k,k],{n,0,12},{k,0,n}]//Flatten

Formula

A(n,k) = Sum_{i=0..(k-1)/2} binomial(n,i) if k is odd;
A(n,k) = binomial(n-1,k/2-1) + Sum_{i=0..k/2-1} binomial(n,i) if k is even.
A(n,3) = n+1.
A(n,6) = A014206(n-1).
A(n,9) = A000127(n+1).
A(n,10) = A059173(n) for n > 0.
A(n,12) = A059174(n) for n > 0.
A(0,k) = A007877(k) for k > 0.
Previous Showing 31-38 of 38 results.