cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-47 of 47 results.

A185355 Number of n X n symmetric (0,1)-matrices containing four ones.

Original entry on oeis.org

0, 1, 12, 52, 150, 345, 686, 1232, 2052, 3225, 4840, 6996, 9802, 13377, 17850, 23360, 30056, 38097, 47652, 58900, 72030, 87241, 104742, 124752, 147500, 173225, 202176, 234612, 270802, 311025, 355570, 404736, 458832, 518177, 583100, 653940, 731046, 814777
Offset: 1

Views

Author

L. Edson Jeffery, Feb 29 2012

Keywords

Comments

Based on equation (11) from the Cameron et al., reference.

Crossrefs

Column m=4 of A184948.

Programs

  • Maple
    a:= n-> (7+(5*n-12)*n)*n^2/12:
    seq (a(n), n=1..40);
  • Mathematica
    Table[n^2*(n - 1)*(5*n - 7)/12, {n, 1, 50}] (* G. C. Greubel, Jun 28 2017 *)
  • PARI
    for(n=1,25, print1(n^2*(n-1)*(5*n-7)/12, ", ")) \\ G. C. Greubel, Jun 28 2017

Formula

a(n) = Sum_{k=0..2} C(C(n,2),k)*C(n,4-2*k).
a(n) = n^2*(n-1)*(5*n-7)/12.
G.f.: x^2*(1+7*x+2*x^2)/(1-x)^5.

A189711 Number of non-monotonic functions from [k] to [n-k].

Original entry on oeis.org

2, 10, 8, 28, 54, 22, 60, 190, 204, 52, 110, 490, 916, 676, 114, 182, 1050, 2878, 3932, 2118, 240, 280, 1988, 7278, 15210, 16148, 6474, 494, 408, 3444, 15890, 45738, 77470, 65210, 19576, 1004, 570, 5580, 31192, 115808, 278358, 389640, 261708, 58920, 2026, 770, 8580, 56484, 258720, 820118, 1677048, 1951700, 1048008, 176994, 4072, 1012, 12650, 96006, 525444, 2090296, 5758802, 10073698, 9763628, 4193580, 531262, 8166
Offset: 5

Views

Author

Dennis P. Walsh, Apr 25 2011

Keywords

Comments

Triangle T(n,k), 3<=k<=n-2, given by (n-k)^k-2*C(n-1,k)+(n-k) is derived using inclusion/exclusion. The triangle contains several other listed sequences: T(2n,n) is sequence A056174(n), number of monotonic functions from [n] to [n]; T(n+2,n) is sequence A005803(n), second-order Eulerian numbers; and T(n,3) is A006331(n-4), maximum accumulated number of electrons at energy level n.

Examples

			Triangle T(n,k) begins
  n\k    3     4     5     6     7     8     9
   5     2
   6    10     8
   7    28    54    22
   8    60   190   204    52
   9   110   490   916   676   114
  10   182  1050  2878  3932  2118   240
  11   280  1988  7278 15210 16148  6474   494
  ...
For n=6 and k=4, T(6,4)=8 since there are 8 non-monotonic functions f from [4] to [2], namely, f = <f(1),f(2),f(3),f(4)> given by <1,1,2,1>, <1,2,1,1>, <1,2,2,1>, <1,2,1,2>, <2,2,1,2>, <2,1,2,2>, <2,1,1,2>, and <2,1,2,1>.
		

Crossrefs

Cf. A007318.

Programs

  • Haskell
    a189711 n k = (n - k) ^ k - 2 * a007318 (n - 1) k + n - k
    a189711_row n = map (a189711 n) [3..n-2]
    a189711_tabl = map a189711_row [5..]
    -- Reinhard Zumkeller, May 16 2014
  • Maple
    seq(seq((n-k)^k-2*binomial(n-1,k)+(n-k),k=3..(n-2)),n=5..15);
  • Mathematica
    nmax = 15; t[n_, k_] := (n-k)^k-2*Binomial[n-1, k]+(n-k); Flatten[ Table[ t[n, k], {n, 5, nmax}, {k, 3, n-2}]](* Jean-François Alcover, Nov 18 2011, after Maple *)

Formula

T(n,k)=(n-k)^k-2*C(n-1,k)+(n-k).
T(n,3) = A006331(n-4) for n>=5.
T(n+2,n) = A005803(n) for n>=3.
T(2n,n) = A056174(n) for n>=3.

A233295 Riordan array ((1+x)/(1-x)^3, 2*x/(1-x)).

Original entry on oeis.org

1, 4, 2, 9, 10, 4, 16, 28, 24, 8, 25, 60, 80, 56, 16, 36, 110, 200, 216, 128, 32, 49, 182, 420, 616, 560, 288, 64, 64, 280, 784, 1456, 1792, 1408, 640, 128, 81, 408, 1344, 3024, 4704, 4992, 3456, 1408, 256, 100, 570, 2160, 5712, 10752, 14400, 13440, 8320, 3072, 512
Offset: 0

Views

Author

Philippe Deléham, Dec 07 2013

Keywords

Comments

Subtriangle of the triangle in A208532.
Row sums are A060188(n+2).
Diagonal sums are A000295(n+2)=A125128(n+1)=A130103(n+2).

Examples

			Triangle begins :
1
4, 2
9, 10, 4
16, 28, 24, 8
25, 60, 80, 56, 16
36, 110, 200, 216, 128, 32
49, 182, 420, 616, 560, 288, 64
64, 280, 784, 1456, 1792, 1408, 640, 128
81, 408, 1344, 3024, 4704, 4992, 3456, 1408, 256
100, 570, 2160, 5712, 10752, 14400, 13440, 8320, 3072, 512
		

Crossrefs

Cf. Columns: A000290, A006331, A112742.
Cf. Diagonal: A000079.

Formula

G.f. for the column k: 2^k*(1+x)/(1-x)^(k+3).
T(n,k) = 2^k*(binomial(n,k)+3*binomial(n,k+1)+2*binomial(n,k+2)), 0<=k<=n.
T(n,0) = 2*T(n-1,0)-T(n-2,0)+2, T(n,k)=2*T(n-1,k)+2*T(n-1,k-1)-2*T(n-2,k-1)-T(n-2,k) for k>=1, T(0,0)=1, T(1,0)=4, T(1,1)=2, T(n,k)=0 if k<0 or if k>n.
Sum_{k=0..n} T(n,k) = A060188(n+2).
Sum_{k=0..n} T(n,k)*(-1)^k = n+1.
T(n,k) = 2*sum_{j=1..n-k+1} T(n-j,k-1).
T(n,k) = 2^k*A125165(n,k).
T(n,n) = 2^n=A000079(n).
T(n,0) = (n+1)^2=A000290(n+1).
exp(2*x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(2*x)*(16 + 28*x + 24*x^2/2! + 8*x^3/3!) = 16 + 60*x + 200*x^2/2! + 616*x^3/3! + 1792*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), 2*x/(1 - x) ). Cf. A125165. - Peter Bala, Dec 21 2014

A296636 Sequences n*(n+1)*(6*n+1)/2 and n*(n+1)*(7*n+1)/2 interleaved.

Original entry on oeis.org

0, 7, 8, 39, 45, 114, 132, 250, 290, 465, 540, 777, 903, 1204, 1400, 1764, 2052, 2475, 2880, 3355, 3905, 4422, 5148, 5694, 6630, 7189, 8372, 8925, 10395, 10920, 12720, 13192, 15368, 15759, 18360, 18639, 21717, 21850, 25460, 25410, 29610, 29337, 34188, 33649, 39215, 38364, 44712
Offset: 0

Views

Author

Luce ETIENNE, Dec 17 2017

Keywords

Comments

Difference between these subsequences is A002411.
This sequence gives numbers of triangles all sizes in every n-th stage [of what? - N. J. A. Sloane, Feb 09 2018].

Crossrefs

Programs

  • GAP
    List([0..50], n -> (2*n+1-(-1)^n)*(2*n+5-(-1)^n)*(13*n+10+(n-6)*(-1)^n)/128); # Bruno Berselli, Feb 12 2018
    
  • Magma
    [(2*n+1-(-1)^n)*(2*n+5-(-1)^n)*(13*n+10+(n-6)*(-1)^n)/128: n in [0..50]]; // Bruno Berselli, Feb 12 2018
  • Mathematica
    CoefficientList[Series[x (7 + 8 x + 11 x^2 + 13 x^3)/((1 - x)^4*(1 + x)^4), {x, 0, 46}], x] (* Michael De Vlieger, Dec 18 2017 *)
    LinearRecurrence[{0,4,0,-6,0,4,0,-1},{0,7,8,39,45,114,132,250},50] (* Harvey P. Dale, May 01 2018 *)
    Rest[Flatten[Table[With[{c=(n(n+1))/2},{c*(6n+1),c*(7n+1)}],{n,0,30}]]] (* Harvey P. Dale, Oct 11 2020 *)
  • PARI
    concat(0, Vec(x*(7 + 8*x + 11*x^2 + 13*x^3) / ((1 - x)^4*(1 + x)^4) + O(x^80))) \\ Colin Barker, Dec 18 2017
    

Formula

a(n) = a(n-1)+4*a(n-2)-4*a(n-3)-6*a(n-4)+6*a(n-5)+4*a(n-6)-4*a(n-7)-a(n-8)+a(n-9).
a(n) = (2*n+1-(-1)^n)*(2*n+5-(-1)^n)*(13*n+10+(n-6)*(-1)^n)/128.
From Colin Barker, Dec 18 2017: (Start)
G.f.: x*(7 + 8*x + 11*x^2 + 13*x^3) / ((1 - x)^4*(1 + x)^4).
a(n) = 4*a(n-2) - 6*a(n-4) + 4*a(n-6) - a(n-8) for n>7.
(End)

A233207 Triangle T(n,k), read by rows, given by T(n+k,k)=2*k*(2*n+1).

Original entry on oeis.org

0, 0, 2, 0, 6, 4, 0, 10, 12, 6, 0, 14, 20, 18, 8, 0, 18, 28, 30, 24, 10, 0, 22, 36, 42, 40, 30, 12, 0, 26, 44, 54, 56, 50, 36, 14, 0, 30, 52, 66, 72, 70, 60, 42, 16, 0, 34, 60, 78, 88, 90, 84, 70, 48, 18, 0, 38, 68, 90, 104, 110, 108, 98, 80, 54, 20, 0, 42, 76, 102
Offset: 0

Views

Author

Philippe Deléham, Dec 05 2013

Keywords

Comments

Row sums are A006331(n).
Diagonal sums are A212964(n+1).
T(2n,n)=A002943(n).

Examples

			Triangle begins:
  0
  0, 2
  0, 6, 4
  0, 10, 12, 6
  0, 14, 20, 18, 8
  0, 18, 28, 30, 24, 10
		

Crossrefs

Formula

T(n+k,k) = A005843(k)*A005408(n).
Sum_{k=0..n} T(n,k) = n*(n+1)*(2*n+1)/3 = A006331(n).

A241262 Array t(n,k) = binomial(n*k, n+1)/n, where n >= 1 and k >= 2, read by ascending antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 10, 6, 14, 42, 28, 10, 42, 198, 165, 60, 15, 132, 1001, 1092, 455, 110, 21, 429, 5304, 7752, 3876, 1020, 182, 28, 1430, 29070, 57684, 35420, 10626, 1995, 280, 36, 4862, 163438, 444015, 339300, 118755, 24570, 3542, 408, 45, 16796, 937365, 3506100, 3362260, 1391280, 324632, 50344, 5850, 570, 55
Offset: 1

Views

Author

Jean-François Alcover, Apr 18 2014

Keywords

Comments

About the "root estimation" question asked in MathOverflow, one can check (at least numerically) that, for instance with k = 4 and a = 1/11, the series a^-1 + (k - 1) + Sum_{n>=} (-1)^n*binomial(n*k, n+1)/n*a^n evaluates to the positive solution of x^k = (x+1)^(k-1).
Row 1 is A000217 (triangular numbers),
Row 2 is A006331 (twice the square pyramidal numbers),
Row 3 is A067047(3n) = lcm(3n, 3n+1, 3n+2, 3n+3)/12 (from column r=4 of A067049),
Row 4 is A222715(2n) = (n-1)*n*(2n-1)*(4n-3)*(4n-1)/15,
Row 5 is not in the OEIS.
Column 1 is A000108 (Catalan numbers),
Column 2 is A007226 left shifted 1 place,
Column 4 is A007228 left shifted 1 place,
Column 5 is A124724 left shifted 1 place,
Column 6 is not in the OEIS.

Examples

			Array begins:
    1,    3,     6,     10,      15,      21, ...
    2,   10,    28,     60,     110,     182, ...
    5,   42,   165,    455,    1020,    1995, ...
   14,  198,  1092,   3876,   10626,   24570, ...
   42, 1001,  7752,  35420,  118755,  324632, ...
  132, 5304, 57684, 339300, 1391280, 4496388, ...
  etc.
		

References

  • N. S. S. Gu, H. Prodinger, S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat. 31 (2010) 720-732, doi|10.1016/j.ejc.2009.10.007, Theorem 2

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Binomial[n*k, n+1]/n; Table[t[n-k+2, k], {n, 1, 10}, {k, 2, n+1}] // Flatten

A354127 Triangle read by rows: T(n, k) is the number of graphs obtained by adding k pierced circles to a path graph P_n.

Original entry on oeis.org

1, 1, 0, 2, 2, 0, 12, 10, 3, 0, 82, 82, 28, 4, 0, 646, 738, 315, 60, 5, 0, 5574, 7198, 3636, 900, 110, 6, 0, 51386, 74086, 43225, 13020, 2135, 182, 7, 0, 498026, 793490, 524784, 185920, 37940, 4452, 280, 8, 0, 5019720, 8761906, 6475959, 2634912, 642180, 95508, 8442, 408, 9, 0
Offset: 0

Views

Author

Stefano Spezia, May 18 2022

Keywords

Examples

			The triangle begins
      1;
      1,   0;
      2,   2,   0;
     12,  10,   3,   0;
     82,  82,  28,   4,   0;
    646, 738, 315,  60,   5,   0;
    ...
		

Crossrefs

Cf. A000007 (k = n), A000027 (k = n - 1), A000108, A001246 (row sums), A006331, A007318, A052553.

Programs

  • Mathematica
    bigO[k_,s_]:=Binomial[2s-k-1,k]CatalanNumber[s-k]^2; T[n_,k_]:=Sum[(-1)^(m+k)Binomial[m,k]bigO[m,n],{m,k,n}];Flatten[Table[T[n,k],{n,0,9},{k,0,n}]]

Formula

T(n, k) = Sum_{m=k..n} (-1)^(m+k)*binomial(m, k)*O(m, n), with O(k, s) = binomial(2*s-k-1, k)*C(s-k)^2 (see Lemma 3.3 at page 7 in Owad and Tsvietkova).
T(n, n-2) = A006331(n-1).
Previous Showing 41-47 of 47 results.