cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 52 results. Next

A154146 Numbers k such that 16 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

0, 14, 17, 87, 104, 510, 609, 2975, 3552, 17342, 20705, 101079, 120680, 589134, 703377, 3433727, 4099584, 20013230, 23894129, 116645655, 139265192, 679860702, 811697025
Offset: 0

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Comments

Numbers k such that x=2*k+1 satisfies the Pell-type equation x^2 = 8*y^2 - 127. - Robert Israel, Jul 18 2019

Examples

			0, 14, 17, and 87 are terms:
   0* (0+1)/2 + 16 =  4^2,
  14*(14+1)/2 + 16 = 11^2,
  17*(17+1)/2 + 16 = 13^2,
  87*(87+1)/2 + 16 = 62^2.
		

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n+4)-6*a(n+2)+a(n)=2, a(0)=0, a(1)=14, a(2)=17, a(3)=87}, a(n), remember):
    map(f, [$0..40]); # Robert Israel, Jul 18 2019
  • Mathematica
    Join[{0}, Select[Range[0, 1000], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 16 &]] (* G. C. Greubel, Sep 03 2016 *)
  • PARI
    {for (n=0, 10^9, if ( issquare(n*(n+1)\2 + 16), print1(n, ", ") ) );}

Formula

{k: 16+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x^2*(-14-3*x+14*x^2+x^3)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 2 + (8+23*x)/(x^2-2*x-1) + 1/(x-1) + (-7+6*x)/(x^2+2*x-1) )/2. (End)
Conjectures confirmed: see link. - Robert Israel, Jul 18 2019

A154147 Indices k such that 19 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

3, 9, 30, 60, 179, 353, 1046, 2060, 6099, 12009, 35550, 69996, 207203, 407969, 1207670, 2377820, 7038819, 13858953, 41025246, 80775900, 239112659, 470796449, 1393650710, 2744002796, 8122791603, 15993220329, 47343098910, 93215319180, 275935801859
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			3*(3+1)/2+19 = 5^2. 9*(9+1)/2+19 = 8^2. 30*(30+1)/2+19 = 22^2. 60*(60+1)/2+19 = 43^2.
		

Crossrefs

Programs

  • Mathematica
    Join[{3, 9}, Select[Range[0, 10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 19 &]] (* or *) LinearRecurrence[{1,6,-6,-1,1}, {3,9,30,60,179}, 25] (* G. C. Greubel, Sep 03 2016 *)
  • PARI
    {for (n=0, 10^9, if ( issquare(n*(n+1)\2 + 19), print1(n, ", ") ) ); }

Formula

{k: 19+k*(k+1)/2 in A000290}.
a(n)= +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(3 +6*x +3*x^2 -6*x^3 -4*x^4)/((1-x) * (x^2-2*x-1) * (x^2+2*x-1)).

A154149 Indices k such that 22 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

2, 12, 27, 77, 162, 452, 947, 2637, 5522, 15372, 32187, 89597, 187602, 522212, 1093427, 3043677, 6372962, 17739852, 37144347, 103395437, 216493122, 602632772, 1261814387, 3512401197, 7354393202, 20471774412, 42864544827, 119318245277, 249832875762
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			2*(2+1)/2+22 = 5^2. 12*(12+1)/2+22 = 10^2. 27*(27+1)/2+22 = 20^2. 77*(77+1)/2+22 = 55^2.
		

Crossrefs

Programs

  • Mathematica
    Join[{2, 12}, Select[Range[0, 10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 22 &]] (* or *) LinearRecurrence[{1,6,-6,-1,1}, {2,12,27,77,162}, 25] (* G. C. Greubel, Sep 03 2016 *)
  • PARI
    Vec(x*(-2-10*x-3*x^2+10*x^3+3*x^4)/((x-1)*(x^2-2*x-1)*(x^2+2*x-1)) + O(x^30)) \\ Colin Barker, Jul 11 2015

Formula

{k: 22+k*(k+1)/2 in A000290}
a(n)= +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-2-10*x-3*x^2+10*x^3+3*x^4)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 6 + (10+25*x)/(x^2-2*x-1) - 5/(x^2+2*x-1) + 1/(x-1) )/2.

Extensions

Extended by D. S. McNeil, Dec 04 2010

A154151 Indices k such that 25 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

0, 18, 21, 111, 128, 650, 749, 3791, 4368, 22098, 25461, 128799, 148400, 750698, 864941, 4375391, 5041248, 25501650, 29382549, 148634511, 171254048, 866305418, 998141741, 5049197999, 5817596400, 29428882578, 33907436661, 171524097471, 197627023568
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			0*(0+1)/2+25 = 5^2. 18*(18+1)/2+25 = 14^2. 21*(21+1)/2+25 = 16^2. 111*(111+1)/2+25 = 79^2.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Select[Range[0, 10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 25 &]] (* or *) LinearRecurrence[{1,6,-6,-1,1}, {0,18,21,111,128}, 25] (* G. C. Greubel_, Sep 03 2016 *)
  • PARI
    for(n=1,10^10,if(issquare(25+n*(n+1)/2),print1(n,", ")))

Formula

{k: 25+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n)= +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x^2*(-18-3*x+18*x^2+x^3)/( (x-1) * (x^2+2*x-1) * (x^2-2*x-1)).
G.f.: ( 2 + 1/(x-1) + (10+29*x)/(x^2-2*x-1) + (-9+8*x)/(x^2+2*x-1) )/2. (End)
The first conjecture is true for the first 1000 terms of the sequence. - Harvey P. Dale, Jun 15 2013

A182334 Triangular numbers that differ from a square by 1.

Original entry on oeis.org

0, 1, 3, 10, 15, 120, 325, 528, 4095, 11026, 17955, 139128, 374545, 609960, 4726275, 12723490, 20720703, 160554240, 432224101, 703893960, 5454117903, 14682895930, 23911673955, 185279454480, 498786237505, 812293020528, 6294047334435, 16944049179226
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 25 2012

Keywords

Comments

From Robert G. Wilson v, Jun 20 2015: (Start)
Actually this sequence is the union of two subsequences; the triangular numbers that are less than a square by 1 and those that are greater than a square by 1.
The first sequence by index of the triangular numbers is A072221: b(n) = 6b(n-1) - b(n-2) + 2, with b(0)=1, b(1)=4.
And obviously the second sequence by index of the triangular numbers is A006451: c(n) = 6c(n-2) - c(n-4) + 2 with c(0)=0, c(1)=2, c(2)=5, c(3)=15.
(End)

Examples

			T(2) = 3 = 2^2 - 1, T(4) = 10 = 3^2 + 1,  T(5) = 15 = 4^2 - 1, and T(15) = 120 = 11^2 - 1.
		

References

  • Edward J. Barbeau, Pell's Equation (Springer 2003) at 17.

Crossrefs

Subsequence of A000217 and of A087279.

Programs

  • Magma
    I:=[0,1,3,10,15,120,325,528,4095,11026,17955]; [n le 11 select I[n] else 35*Self(n-3)-35*Self(n-6)+Self(n-9): n in [1..30]]; // Vincenzo Librandi, Jun 21 2015
    
  • Mathematica
    lst = {}; Do[t = n*(n + 1)/2; If[IntegerQ[(t - 1)^(1/2)] || IntegerQ[(t + 1)^(1/2)], AppendTo[lst, t]], {n, 0, 10^4}]; lst (* Arkadiusz Wesolowski, Aug 06 2012 *)
    b[n_] := b[n] = 6 b[n - 1] - b[n - 2] + 2; b[0] = 1; b[1] = 4; c[n_] := c[n] = 6 c[n - 2] - c[n - 4] + 2; c[0] = 0; c[1] = 2; c[2] = 5; c[3] = 15; #(# + 1)/2 & /@ Union@ Join[ Array[b, 9, 0], Array[c, 18, 0]] (* or *)
    #(# + 1)/2 & /@ Join[{0, 1}, LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {2, 4, 5, 15, 25, 32, 90}, 35]] (* or *)
    #(# + 1)/2 & /@ CoefficientList[ Series[x + x^2 (1 + x) (2 + x^2 - 3 x^3 + x^4)/((1 - x) (1 - 6 x^3 + x^6)), {x, 0, 36}], x] (* Robert G. Wilson v, Jun 20 2015 *)
    a[n_] := a[n] = 35 a[n - 3] - 35 a[n - 6] + a[n - 9]; a[1] = 0; a[2] = 1; a[3] = 3; a[4] = 10; a[5] = 15; a[6] = 120; a[7] = 325; a[8] = 528; a[9] = 4095; a[10] = 11026; a[11] = 17955; Array[a, 36] (* Robert G. Wilson v after Charles R Greathouse IV, Apr 25 2012 *)
    Select[Accumulate[Range[0,6*10^6]],AnyTrue[Sqrt[#+{1,-1}],IntegerQ]&] (* or *) LinearRecurrence[{0,0,35,0,0,-35,0,0,1},{0,1,3,10,15,120,325,528,4095,11026,17955},40] (* The first program uses the AnyTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 24 2015 *)
  • PARI
    concat(0, Vec(x^2*(1+3*x+10*x^2-20*x^3+15*x^4-25*x^5+38*x^6+x^8-x^9)/((1-x)*(1+x+x^2)*(1-34*x^3+x^6)) + O(x^30))) \\ Colin Barker, Sep 17 2016

Formula

a(n) = 35*a(n-3) - 35*a(n-6) + a(n-9). - Charles R Greathouse IV, Apr 25 2012
G.f.: x^2*(1+3*x+10*x^2-20*x^3+15*x^4-25*x^5+38*x^6+x^8-x^9) / ((1-x)*(1+x+x^2)*(1-34*x^3+x^6)). - Colin Barker, Sep 17 2016

A266504 a(n) = 2*a(n - 2) + a(n - 4) with a(0) = a(1) = 2, a(2) = 1, a(3) = 3.

Original entry on oeis.org

2, 2, 1, 3, 4, 8, 9, 19, 22, 46, 53, 111, 128, 268, 309, 647, 746, 1562, 1801, 3771, 4348, 9104, 10497, 21979, 25342, 53062, 61181, 128103, 147704, 309268, 356589, 746639, 860882, 1802546, 2078353, 4351731, 5017588, 10506008, 12113529, 25363747, 29244646, 61233502
Offset: 0

Views

Author

Raphie Frank, Dec 30 2015

Keywords

Comments

This sequence gives all x in N | 2*x^2 - 7(-1)^x = y^2. The companion sequence to this sequence, giving y values, is A266505.
A266505(n)/a(n) converges to sqrt(2).
Alternatively, 1/4*(3*A002203(floor[n/2]) - A002203(n-(-1)^n)), where A002203 gives the Companion Pell numbers, or, in Lucas sequence notation, V_n(2, -1).
Alternatively, bisection of A266506.
Alternatively, A048654(n -1) and A078343(n + 1) interlaced.
Alternatively, A100525(n-1), A266507(n), A038761(n) and A253811(n) interlaced.
Let b(n) = (a(n) - a(n)(mod 2))/2, that is b(n) = {1, 1, 0, 1, 2, 4, 4, 9, 11, 23, 26, 55, 64, ...}. Then:
A006452(n) = {b(4n+0) U b(4n+1)} gives n in N such that n^2 - 1 is triangular;
A216134(n) = {b(4n+2) U b(4n+3)} gives n in N such that n^2 + n + 1 is triangular (indices of Sophie Germain triangular numbers);
A216162(n) = {b(4n+0) U b(4n+2) U b(4n+1) U b(4n+3)}, sequences A006452 and A216134 interlaced.

Crossrefs

Programs

  • Magma
    I:=[2,2,1,3]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
    
  • Mathematica
    LinearRecurrence[{0, 2, 0, 1}, {2, 2, 1, 3}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
    Table[SeriesCoefficient[(1 - x) (2 + 4 x + x^2)/(1 - 2 x^2 - x^4), {x, 0, n}], {n, 0, 41}] (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    Vec((1-x)*(2+4*x+x^2)/(1-2*x^2-x^4) + O(x^50)) \\ Colin Barker, Dec 31 2015

Formula

a(n) = 1/sqrt(8)*(+sqrt(2)*(1+sqrt(2))^(floor(n/2)-(-1)^n)*(-1)^n - 3*(1-sqrt(2))^(floor(n/2)-(-1)^n) + sqrt(2)*(1-sqrt(2))^(floor(n/2)-(-1)^n)*(-1)^n + 3*(1+sqrt(2))^(floor(n/2)-(-1)^n)).
a(n) = 1/4*((3*((1+sqrt(2))^floor(n/2)+(1-sqrt(2))^floor(n/2))) - (-1)^n*((1+sqrt(2))^(floor(n/2)-(-1)^n)+(1-sqrt(2))^(floor(n/2)-(-1)^n))).
a(2n) = (+sqrt(2)*(1+sqrt(2))^(n-1) - 3 *(1-sqrt(2))^(n-1) + sqrt(2)*(1-sqrt(2))^(n-1) + 3*(1 + sqrt(2))^(n-1))/sqrt(8) = A048654(n -1).
a(2n) = 1/4*((3*((1+sqrt(2))^n+(1-sqrt(2))^n)) - ((1+sqrt(2))^(n-1)+(1-sqrt(2))^(n-1))) = A048654(n -1).
a(2n + 1) = (-sqrt(2)*(1+sqrt(2))^(n+1) - 3 *(1-sqrt(2))^(n+1) - sqrt(2)*(1-sqrt(2))^(n+1) + 3*(1+sqrt(2))^(n+1))/sqrt(8) = A078343(n + 1).
a(2n + 1) =1/4*((3*((1+sqrt(2))^n+(1-sqrt(2))^n)) + ((1+sqrt(2))^(n+1)+(1-sqrt(2))^(n+1))) = A078343(n + 1).
a(4n + 0) = 6*a(4n - 4) - a(4n - 8) = A100525(n-1).
a(4n + 1) = 6*a(4n - 3) - a(4n - 7) = A266507(n).
a(4n + 2) = 6*a(4n - 2) - a(4n - 6) = A038761(n).
a(4n + 3) = 6*a(4n - 1) - a(4n - 5) = A253811(n).
sqrt(2*a(n)^2 - 7(-1)^a(n))*sgn(2*n - 1) = A266505(n).
(a(2n + 1) + a(2n))/2 = A002203(n), where A002203 gives the companion Pell numbers.
(a(2n + 1) - a(2n))/2 = A000129(n), where A000129 gives the Pell numbers.
(a(2n+2) + a(2n+1))*2 = A002203(n+2)
(a(2n+2) - a(2n+1))*2 = A002203(n-1).
G.f.: (1-x)*(2+4*x+x^2) / (1-2*x^2-x^4). - Colin Barker, Dec 31 2015

A285984 Numbers k such that 27*T(k)+1 is a square, where T(m) is the m-th triangular number A000217(m).

Original entry on oeis.org

0, 110, 374, 107184, 363264, 103968854, 352366190, 100849681680, 341794841520, 97824087261230, 331540643908694, 94889263793711904, 321594082796592144, 92042488055813286134, 311945928772050471470, 89281118524875093838560, 302587229314806160734240, 86602592926640785210117550
Offset: 0

Views

Author

Vladimir Pletser, May 01 2017

Keywords

Comments

Numbers a(n) that make sqrt(27*T(a(n))+1) an integer.
This sequence a(n) gives also the indices of the triangular numbers T(a(n)) such that the 3rd degree Diophantine Bachet-Mordell equation y^2 = x^3+K holds with x = 3*T(a(n)) = A286035(n), y = T(a(n))* sqrt(27*T(a(n))+1) = A286036(n) and K = T(a(n))^2 = A286037(n).

Examples

			k = 110 is a term because 27*(T(110) + 1) = 27 * (110*111/2 + 1) is a square. - _David A. Corneth_, May 02 2017
For n = 2, a(2) = 264*sqrt(27*(a(0)*(a(0)+1)/2)+1)+ a(-2) = 264*sqrt(27*(0*(0+1)/2)+1) + 110 = 374.
For n = 6, a(6) = 264*sqrt(27*(a(4)*(a(4)+1)/2)+1)+ a(2) = 264*sqrt(27*(363264*(363264+1)/2)+1) + 374 = 352366190.
		

References

  • V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.

Crossrefs

Programs

  • Maple
    restart: am2:=110: am1:=0: a0:=0: ap1:=110: print ('0,0','1,110'); for n from 2 to 1000 do a:= 264*sqrt(27* (a0^2+a0)/2+1)+am2; print(n,a); am2:=am1; am1:=a0; a0:=ap1; ap1:=a; end do:
  • Mathematica
    nxt[{a_,b_}]:={b,485*a+242+66*Sqrt[54a^2+54*a+4]}; NestList[nxt,{0,110},20][[All,1]] (* Harvey P. Dale, May 30 2018 *)
  • PARI
    is(n) = issquare(27*binomial(n+1, 2)+1) \\ David A. Corneth, May 02 2017

Formula

a(n) = 264*sqrt(27*T(a(n-2))+1)+ a(n-4) = 264*sqrt(27*(a(n-2)*(a(n-2)+1)/2)+1)+ a(n-4), with a(-2)=110, a(-1)=0, a(0)=0, a(1)=110.
Empirical g.f.: 22*x*(5 + 12*x + 5*x^2) / ((1 - x)*(1 - 970*x^2 + x^4)). - Colin Barker, May 01 2017, verified by Robert Israel, May 03 2017
a(n) = 485*a(n-2)+242+66*sqrt(54*a(n-2)^2+54*a(n-2)+4). - Robert Israel, May 03 2017

A286035 a(n) = 3*T(A285984(n)), where T(m) is the m-th triangular number A000217(m).

Original entry on oeis.org

0, 18315, 210375, 17232775560, 197941645440, 16214284059063255, 186242898311223435, 15255987442587265956120, 175235570535035566127880, 14354328072739259079522561195, 164878797845087651200279041495, 13505958574968967401962031517525680, 155134131134672045268505114018663320
Offset: 0

Views

Author

Vladimir Pletser, May 01 2017

Keywords

Comments

This sequence a(n) gives the solutions x of the 3rd degree Diophantine Bachet-Mordell equation y^2=x^3+K, with y = T(b(n))*sqrt(27*T(b(n))+1) = A286036(n) and K = (T(b(n)))^2 = A286037(n), the square of the triangular number of b(n)= A285984(n).

Examples

			For n = 2, b(n) = 374, a(n)= 210375.
For n = 3, b(n) = A285984(n) =107184. Therefore, a(n) = 3*T(b(n)) = 3*A000217(A285984(n)) = 3*A000217(107184) = 3*5744258520=17232775560.
		

References

  • V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.

Crossrefs

Programs

  • Maple
    restart: bm2:=110: bm1:=0: b0:=0: bp1:=110: print ('0,0','1,18315'); for n from 2 to 1000 do b:= 264*sqrt(27* (b0^2+b0)/2+1)+bm2; a:=3*b*(b+1)/2;print(n,a); bm2:=bm1; bm1:=b0; b0:=bp1; bp1:=b; end do:

Formula

Since b(n) = 264*sqrt(27*T(b(n-2))+1)+ b(n-4) = 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-2)=110, b(-1)=0, b(0)=0, b(1)=110 (see A285984) and a(n) = 3*T(b(n)) (this sequence), one has :
a(n) = 3*[264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4) ]*[ 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1]/2.
Empirical g.f.: 495*x*(37 + 388*x + 37*x^2) / ((1 - x)*(1 - 970*x + x^2)*(1 + 970*x + x^2)). - Colin Barker, May 01 2017

A286036 a(n) is the solution y to the Bachet Mordell equation y^2=x^3+K, with x = 3*T(b(n)) and K = (T(b(n)))^2, where T(b(n)) is the triangular number of b(n)= A285984(n).

Original entry on oeis.org

0, 2478630, 96492000, 2262209634604920, 88065491686677120, 2064651070850763887750940, 80374740223699340246041830, 1884345278651963087653858708518360, 73355621393690297028946986338029560, 1719785575058362227821108881720941727234290, 66949481579385248741161156467886515267346140
Offset: 0

Views

Author

Vladimir Pletser, May 01 2017

Keywords

Comments

a(n) is the producs of the triangular number T(b(n)) and the square root of 27 times this triangular number plus one, sqrt(27*T(b(n))+1), where b(n) is the sequence A285984(n) of numbers n such that (27*T(n)+1) is a square.

Examples

			For n = 2, b(n) = 374, a(n)= 96492000.
For n = 3, b(n) = A285984(n) =107184. Therefore, a(n) = T(b(n))* sqrt(27*T(b(n))+1) = A000217(A285984(n))* sqrt(27*A000217(A285984(n))+1) = A000217(107184)* sqrt(27*A000217(107184)+1) =5744258520* sqrt(27*5744258520 +1) = 2262209634604920.
		

References

  • V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.

Crossrefs

Programs

  • Maple
    restart: bm2:=110: bm1:=0: b0:=0: bp1:=110: print ('0,0','1,2478630’); for n from 2 to 1000 do b:= 264*sqrt(27* (b0^2+b0)/2+1)+bm2; T:=b*(b+1)/2; a:= T*sqrt(27*T+1); print(n,a); bm2:=bm1; bm1:=b0; b0:=bp1; bp1:=b; end do:

Formula

Since b(n) = 264*sqrt(27*T(b(n-2))+1)+ b(n-4) = 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-2)=110, b(-1)=0, b(0)=0, b(1)=110 (see A285984) and a(n) = T(b(n))*sqrt(27*T(b(n))+1) (this sequence), one has :
a(n) = ([264*sqrt(27*T(b(n-2))+1)+ b(n-4)]*[ 264*sqrt(27*T(b(n-2))+1)+ b(n-4)+1]/2) *sqrt(27*([264*sqrt(27*T(b(n-2))+1)+ b(n-4)]*[ 264*sqrt(27*T(b(n-2))+1)+ b(n-4)+1]/2)+1).
Empirical g.f.: 330*x*(1 + x)*(7511 + 284889*x + 108094375*x^2 + 284889*x^3 + 7511*x^4) / ((1 - 912670090*x^2 + x^4)*(1 - 970*x^2 + x^4)). - Colin Barker, May 01 2017

A286037 a(n) = T(A285984(n))^2, where T(m) is the m-th triangular number A000217(m).

Original entry on oeis.org

0, 37271025, 4917515625, 32996505944592590400, 4353432777721630310400, 29211445283110309395256454577225, 3854046352373857001854365165911025, 25860572538708927496411840821477504196161600, 3411945020082158343071838489442339152945921600, 22894081602203374655543296113789919615194083223613314225
Offset: 0

Views

Author

Vladimir Pletser, May 01 2017

Keywords

Comments

a(n) =(T(b(n)))^2, parameters K=a(n) of the Bachet Mordell equation y^2=x^3+K, with x= 3*T(b(n)) and y= T(b(n))*sqrt(27*T(b(n))+1), where T(b(n)) is the triangular number of b(n)= A285984(n).

Examples

			For n = 2, b(n) = 374, a(n)= 4917515625.
For n = 3, b(n) = A285984(n) =107184. Therefore, a(n) = (T(b(n)))^2 = (A000217(A285984(n)))^2 = (A000217(107184))^2 = (5744258520)^2=32996505944592590400.
		

References

  • V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.

Crossrefs

Programs

  • Maple
    restart: bm2:=110: bm1:=0: b0:=0: bp1:=110: print ('0,0','1,4917515625’); for n from 2 to 1000 do b:= 264*sqrt(27*(b0^2+b0)/2+1)+bm2; a:=(b*(b+1)/2)^2; print(n,a); bm2:=bm1; bm1:=b0; b0:=bp1; bp1:=b; end do:

Formula

Since b(n) = 264*sqrt(27*T(b(n-2))+1)+ b(n-4) = 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-2)=110, b(-1)=0, b(0)=0, b(1)=110 (see A285984) and a(n) = (T(b(n)))^2 (this sequence), one has :
a(n) = ([264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4) ]*[ 264*sqrt(27*(b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1]/2)^2.
Empirical g.f.: 27225*x*(1369 + 179256*x + 30879367019*x^2 + 168661970400*x^3 + 30879367019*x^4 + 179256*x^5 + 1369*x^6) / ((1 - x)*(1 - 940898*x + x^2)*(1 - 970*x + x^2)*(1 + 970*x + x^2)*(1 + 940898*x + x^2)). - Colin Barker, May 01 2017
Previous Showing 21-30 of 52 results. Next