cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A120744 Least k>0 such that a centered polygonal number nk(k+1)/2+1 is a perfect square; or -1 if no such number exists.

Original entry on oeis.org

2, -1, 1, 3, 2, 7, 15, 1, 16, 8, 14, 4, 5, 15, 1, 2, 5, -1, 6, 3, 2, 39, 6, 1, 21, 7, 110, 3, 15, 7, 15, -1, 2, 8, 1, 4, 989, 8, 14, 2, 45, 15, 9, 4, 5, 335, 9, 1, 29, -1, 30, 15, 10, 415, 6, 2, 10, 32, 54, 3, 77, 55, 1, 5, 2, 7, 47750, 11, 15, 23, 47, -1, 48, 24, 16, 12, 5, 8, 2639, 1, 6720, 704, 38, 4, 2, 39, 505, 3, 13, 56, 9, 20, 13, 1631, 41
Offset: 1

Views

Author

Alexander Adamchuk, Apr 26 2007

Keywords

Examples

			a(5) = 2 because A129556(2) = 2>1 and A129556(1) = 0<1.
		

Crossrefs

Formula

a(n) = -1 for n in A166259.
a(n) = 1 for n = k^2-1.

Extensions

Edited and b-file provided by Max Alekseyev, Jan 20 2010

A154142 Indices k such that 9 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

0, 10, 13, 63, 80, 370, 469, 2159, 2736, 12586, 15949, 73359, 92960, 427570, 541813, 2492063, 3157920, 14524810, 18405709, 84656799, 107276336, 493415986, 625252309, 2875839119, 3644237520, 16761618730, 21240172813, 97693873263, 123796799360, 569401620850
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			0*(0+1)/2+9 = 3^2. 10*(10+1)/2+9 = 8^2. 13*(13+1)/2+9 = 10^2. 63*(63+1)/2+9 = 45^2.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..2*10^7] | IsSquare(9 + n*(n+1)/2)]; // Vincenzo Librandi, Sep 03 2016
    
  • Magma
    [0] cat [n: n in [0..2*10^7] | (Ceiling(Sqrt(n*(n+ 1)/2)))^2-n*(n+1)/2 eq 9]; // Vincenzo Librandi, Sep 03 2016
  • Maple
    seq(seq((8*orthopoly[U](k+j,3) - (8 - (-1)^j)*orthopoly[T](k+j,3)-1)/2, j=0..1),k=0..20); # Robert Israel, Jul 07 2015
  • Mathematica
    Join[{0}, Select[Range[0, 1000], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 9 &]] (* G. C. Greubel, Sep 03 2016 *)
    Select[Range[0, 2 10^7], IntegerQ[Sqrt[9 + # (# + 1) / 2]] &] (* Vincenzo Librandi, Sep 03 2016 *)
    (Sqrt[8#+1]-1)/2&/@Select[Accumulate[Range[0,5*10^6]],IntegerQ[Sqrt[#+9]]&] (* The program generates the first 17 terms of the sequence. *) (* Harvey P. Dale, Oct 21 2024 *)

Formula

{k: 9+k*(k+1)/2 in A000290}
Conjectures: (Start)
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - a(n-4) + a(n-5).
G.f.: x^2*(10 +3*x -10*x^2 -x^3)/((1-x) * (x^2-2*x-1) * (x^2+2*x-1))
G.f.: ( 2 + (-5+4*x)/(x^2+2*x-1) + (6+17*x)/(x^2-2*x-1) + 1/(x-1) )/2. (End)
a(1..4) = (0,10,13,63); a(n) = 6*a(n-2) - a(n-4) + 2, for n > 4. - Ctibor O. Zizka, Nov 10 2009
From Robert Israel, Jul 07 2015: (Start)
These conjectures follow from the theory of Pell-like equations.
a(2*k+1) = (8 * A001109(k) -7 * A001541(k) - 1)/2.
a(2*k) = (8 * A001109(k) -9 * A001541(k) - 1)/2. (End)

Extensions

a(16)-a(24) from Donovan Johnson, Nov 01 2010
a(25)-a(30) from Lars Blomberg, Jul 07 2015

A154144 Indices k such that 13 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

2, 8, 23, 53, 138, 312, 807, 1821, 4706, 10616, 27431, 61877, 159882, 360648, 931863, 2102013, 5431298, 12251432, 31655927, 71406581, 184504266, 416188056, 1075369671, 2425721757, 6267713762, 14138142488, 36530912903, 82403133173, 212917763658, 480280656552
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			2*(2+1)/2+13 = 4^2. 8*(8+1)/2+13 = 7^2. 23*(23+1)/2+13 = 17^2. 53*(53+1)/2+13 = 38^2.
		

Crossrefs

Programs

  • Mathematica
    With[{nn=25000},Transpose[Select[Thread[{Range[nn],Accumulate[ Range[nn]]}], IntegerQ[Sqrt[#[[2]]+13]]&]][[1]]] (* Harvey P. Dale, Jan 13 2012 *)
    Join[{2, 8}, Select[Range[0, 1000], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 13 &]] (* G. C. Greubel, Sep 03 2016 *)

Formula

{k: 13+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n) = +a(n-1) + 6*a(n-2) - 6*a(n-3) - a(n-4) + a(n-5).
G.f.: x*(2 +6*x +3*x^2 -6*x^3 -3*x^4)/((1-x) * (x^2-2*x-1) * (x^2+2*x-1))
G.f.: ( 6 + (-3-2*x)/(x^2+2*x-1) + 1/(x-1) + (8+19*x)/(x^2-2*x-1) )/2 . (End)
a(1..4) = (2,8,23,53); a(n) = 6*a(n-2) - a(n-4) + 2, for n>2. - Ctibor O. Zizka, Nov 10 2009

Extensions

a(16)-a(24) from Donovan Johnson, Nov 01 2010
a(25)-a(30) from Lars Blomberg, Jul 07 2015

A154145 Indices k such that 15 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

1, 4, 6, 11, 20, 33, 43, 70, 121, 196, 254, 411, 708, 1145, 1483, 2398, 4129, 6676, 8646, 13979, 24068, 38913, 50395, 81478, 140281, 226804, 293726, 474891, 817620, 1321913, 1711963, 2767870, 4765441, 7704676, 9978054, 16132331, 27775028
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Comments

a(1..4)=(1,4,6,11); a(n>4)=6*a(n-2)-a(n-4)+2. [From Ctibor O. Zizka, Nov 13 2009]

Examples

			1*(1+1)/2+15 = 4^2. 4*(4+1)/2+15 = 5^2. 6*(6+1)/2+15 = 6^2. 11*(11+1)/2+15 = 9^2.
		

Crossrefs

Programs

Formula

{k: 15+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n)= +a(n-1) +6*a(n-4) -6*a(n-5) -a(n-8) +a(n-9).
G.f.: x*(-1-3*x-2*x^2-5*x^3-3*x^4+5*x^5+2*x^6+3*x^7+2*x^8)/((x-1) * (x^4+2*x^2-1) * (x^4-2*x^2-1)).
G.f.: ( 4 + (7+4*x+16*x^2+11*x^3)/(x^4-2*x^2-1) + 1/(x-1) + (-4-7*x-3*x^2-2*x^3)/(x^4+2*x^2-1) )/2. (End)
a(1..4) = (1,4,6,11); a(n) = 6*a(n-2) - a(n-4) + 2, for n>4. - Ctibor O. Zizka, Nov 13 2009

Extensions

a(32)-a(37) from Donovan Johnson, Nov 01 2010

A154148 Numbers k such that 21 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

5, 7, 40, 50, 237, 295, 1384, 1722, 8069, 10039, 47032, 58514, 274125, 341047, 1597720, 1987770, 9312197, 11585575, 54275464, 67525682
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			5, 7, 40, and 50 are terms:
   5* (5+1)/2 + 21 =  6^2,
   7* (7+1)/2 + 21 =  7^2,
  40*(40+1)/2 + 21 = 29^2,
  50*(50+1)/2 + 21 = 36^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[68*10^6],IntegerQ[Sqrt[21+(#(#+1))/2]]&] (* Harvey P. Dale, Mar 07 2017 *)
  • PARI
    {for (n=0, 10^9, if ( issquare(n*(n+1)\2 + 21), print1(n, ", ") ) );}

Formula

{k: 21+k*(k+1)/2 in A000290}
Conjectures: (Start)
a(n)= +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-5-2*x-3*x^2+2*x^3+6*x^4)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 12 + (12+25*x)/(x^2-2*x-1) + 1/(x-1) + (-1-10*x)/(x^2+2*x-1) )/2. (End)

A154150 Numbers k such that 24 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

1, 15, 24, 94, 145, 551, 848, 3214, 4945, 18735, 28824, 109198, 168001, 636455, 979184, 3709534, 5707105, 21620751, 33263448, 126014974
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			1, 5, 24, and 94 are terms:
   1* (1+1)/2 + 24 =  5^2,
  15*(15+1)/2 + 24 = 12^2,
  24*(24+1)/2 + 24 = 18^2,
  94*(94+1)/2 + 24 = 67^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[12602*10^4],IntegerQ[Sqrt[24+(#(#+1))/2]]&] (* Harvey P. Dale, Jul 07 2019 *)
  • PARI
    {for (n=0, 10^9, if ( issquare(n*(n+1)\2 + 24), print1(n, ", ") ) );}

Formula

{k: 24+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-1-14*x-3*x^2+14*x^3+2*x^4)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 4 + 1/(x-1) + (10+27*x)/(x^2-2*x-1) + (-7+4*x)/(x^2+2*x-1) )/2. (End)

A154153 Numbers k such that 28 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

6, 8, 47, 57, 278, 336, 1623, 1961, 9462, 11432, 55151, 66633, 321446, 388368, 1873527, 2263577, 10919718, 13193096, 63644783, 76895001, 370948982, 448176912, 2162049111, 2612166473, 12601345686, 15224821928, 73446025007, 88736765097, 428074804358, 517195768656
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			6, 8, 47, and 57 are terms:
   6* (6+1)/2 + 28 =  7^2,
   8* (8+1)/2 + 28 =  8^2,
  47*(47+1)/2 + 28 = 34^2,
  57*(57+1)/2 + 28 = 41^2.
		

Crossrefs

Cf. A001108 (0), A006451 (1), A154138 (3), A154139 (4), A154140 (6), A154141 (8), A154142 (9), A154143 (10), A154144 (13), A154145 (15), A154146 (16), A154147 (19), A154148 (21), A154149 (22), A154150(24), A154151 (25), A154151 (26), this sequence (28), A154154 (30).

Programs

  • Mathematica
    Join[{6, 8}, Select[Range[0, 10^5], ( Ceiling[Sqrt[#*(# + 1)/2]] )^2 - #*(# + 1)/2 == 28 &]] (* G. C. Greubel, Sep 03 2016 *)
  • PARI
    {for (n=0, 10^9, if ( issquare(n*(n+1)\2 + 28), print1(n, ", ") ) );}

Formula

{k: 28+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-6-2*x-3*x^2+2*x^3+7*x^4)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 14 + 1/(x-1) + (14+29*x)/(x^2-2*x-1) + (-1-12*x)/(x^2+2*x-1) )/2. (End)
See also the Corneth link - David A. Corneth, Mar 18 2019

Extensions

a(21)-a(30) from Amiram Eldar, Mar 18 2019

A154154 Numbers k such that 30 plus the k-th triangular number is a perfect square.

Original entry on oeis.org

3, 13, 34, 84, 203, 493, 1186, 2876, 6915, 16765, 40306, 97716, 234923, 569533, 1369234, 3319484, 7980483, 19347373, 46513666
Offset: 1

Views

Author

R. J. Mathar, Oct 18 2009

Keywords

Examples

			3, 13, 34, and 84 are terms:
   3* (3+1)/2 + 30 =  6^2,
  13*(13+1)/2 + 30 = 11^2,
  34*(34+1)/2 + 30 = 25^2,
  84*(84+1)/2 + 30 = 60^2.
		

Crossrefs

Programs

Formula

{k: 30+k*(k+1)/2 in A000290}.
Conjectures: (Start)
a(n) = +a(n-1) +6*a(n-2) -6*a(n-3) -a(n-4) +a(n-5).
G.f.: x*(-3-10*x-3*x^2+10*x^3+4*x^4)/((x-1) * (x^2-2*x-1) * (x^2+2*x-1)).
G.f.: ( 8 + (-5-2*x)/(x^2+2*x-1) + (12+29*x)/(x^2-2*x-1) + 1/(x-1) )/2. (End)

A217278 Sequences A124174 and A006454 interlaced.

Original entry on oeis.org

0, 0, 1, 3, 10, 15, 45, 120, 351, 528, 1540, 4095, 11935, 17955, 52326, 139128, 405450, 609960, 1777555, 4726275, 13773376, 20720703, 60384555, 160554240, 467889345, 703893960, 2051297326, 5454117903, 15894464365, 23911673955, 69683724540, 185279454480
Offset: 0

Views

Author

Raphie Frank, Sep 29 2012

Keywords

Comments

a(2n) and 2*a(2n) + 1 are triangular.
a(2n + 1) is triangular and a(2n + 1)/2 is the harmonic mean of consecutive triangular numbers (therefore, a(2n + 1) + 1 is square).

Examples

			a(18) = 35*(52326 - 1540) + 45 = 1777555,
a(19) = 35*(139128 - 4095) + 120 = 4726275.
		

Crossrefs

Cf. (sqrt(8a(2n) + 1) - 1)/2 = A216134(n) = A216162(2n + 1).
Cf. sqrt(a(2n+1) + 1) = A006452(n + 1) = A216162(2n + 2).
Cf. (sqrt(8a(2n+1) + 1) - 1)/2 = A006451(n).

Programs

  • Mathematica
    LinearRecurrence[{0,1,0,34,0,-34,0,-1,0,1},{0,0,1,3,10,15,45,120,351,528},40] (* Harvey P. Dale, Aug 04 2019 *)
  • PARI
    concat([0,0], Vec(-x^2*(3*x^5+x^4+12*x^3+9*x^2+3*x+1)/((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)*(x^4+6*x^2+1)) + O(x^100))) \\ Colin Barker, Jun 23 2015

Formula

a(n) = 35*(a(n-4) - a(n-8)) + a(n-12).
lim n --> infinity a(2n)/a(2n - 1) = (3 + sqrt(8))/2.
From Raphie Frank, Dec 21 2015: (Start)
a(2*n + 1) = 1/64*(((4 + sqrt(2)) * (1 - (-1)^(n+1) * sqrt(2))^(2*floor((n+1)/2)) + (4 - sqrt(2)) * (1+(-1)^(n+1) * sqrt(2))^(2*floor((n+1)/2))))^2 - 1.
a(2*n + 2) = 1/2*(3*(a(2*n + 1)) + sqrt((a(2*n + 1)) + 1) * sqrt(8*(a(2*n + 1)) + 1) + 1).
(End)

A226071 Numbers k such that triangular(k)+1 is a square and triangular(k)+2 is a prime.

Original entry on oeis.org

0, 2, 5, 189, 3074, 218685
Offset: 1

Views

Author

Alex Ratushnyak, May 25 2013

Keywords

Comments

Subsequence of A006451 that contains the terms k such that triangular(k)+2 is prime.
a(7) is too large to include here (see b-file). - Max Alekseyev, Jan 30 2014

Crossrefs

Corresponding primes: A226069.
Roots of corresponding squares: A226070.

Programs

  • C
    // see A226069.
  • Mathematica
    Select[Range[0,220000],IntegerQ[Sqrt[(#(#+1))/2+1]]&&PrimeQ[(#(#+1))/2+2]&] (* Harvey P. Dale, Mar 01 2023 *)

Extensions

Terms a(7)-a(12) from Max Alekseyev, Jan 30 2014
Previous Showing 31-40 of 52 results. Next