cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 61 results. Next

A273461 Number of physically stable n X n placements of water source-blocks in Minecraft.

Original entry on oeis.org

1, 2, 9, 40, 484, 9717, 338724, 21624680, 2504301849, 520443847520, 195145309791364, 131850659243316222, 160668896658179472676, 352891729183598844656996, 1397187513066371784602204416, 9972288382286063615850619475640
Offset: 0

Views

Author

Gus Wiseman, May 23 2016

Keywords

Comments

In Minecraft worlds, a source block of water can be reacted with another source block, two blocks away. This reaction creates a third "infinite" source block in the unoccupied intermediate block, so called because if the intermediate water source is destroyed or picked up by a player using a bucket, it will immediately regenerate itself.
A placement of water at several positions in an n X n board is said to be *stable* if no infinite water physics can in fact occur (under otherwise optimal conditions). This means that the total quantity of water in the system is held constant.
In short, no two source blocks can be graph-distance 2 from each other. - Gus Wiseman, Nov 27 2019
Often incorrectly described as cellular automata, the observed behaviors of liquids within a board are inseparable in certain ways from states of affair outside of the board and events outside of the system. This aspect of Minecraft is poorly understood.

Examples

			a(2) = 9: {{}, {(2,2)}, {(2,1)}, {(2,1),(2,2)}, {(1,2)}, {(1,2),(2,2)}, {(1,1)}, {(1,1),(2,1)}, {(1,1),(1,2)}}.
		

Crossrefs

The one-dimensional version is A006498.
Dominated by A329871.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    allflows[n_]:=stableSets[Join@@Array[List,{n,n}],Function[{v,w},Plus@@Abs/@(w-v)===2]];
    Table[Length[allflows[i]],{i,6}] (* Gus Wiseman, May 23 2016 *)

Extensions

a(7) from Tae Lim Kook, May 25 2016
a(8) from Tae Lim Kook, May 29 2016
a(7)-a(8) corrected by Christopher Cormier, Dec 17 2019
a(9)-a(15) from Christopher Cormier, Dec 19 2019

A329871 Number of static n X n placements of water source-blocks in Minecraft.

Original entry on oeis.org

1, 2, 10, 55, 754, 18853, 82931, 70143802, 11087020614, 3243227117597, 1772826333285009, 1806938280429412270, 3430002591378184399879, 12137184871791092506807847, 80047171080361800628780500638, 983838070049011459232146327319193
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2019

Keywords

Comments

In Minecraft worlds, a source block of water can be reacted with another source block, two blocks away, linearly or diagonally. This reaction creates a third "infinite" source block in the unoccupied intermediate block or blocks, so called because if the intermediate water source is destroyed or picked up by a player using a bucket, it will immediately regenerate itself.
A placement of water at several positions in an n X n board is said to be static if no infinite water sources are created that are not already present. In particular, the total quantity of water in the system is held constant.

Crossrefs

Dominates A273461.
The one-dimensional case is A005251.

Programs

  • Mathematica
    vdist[v_,w_]:=Total[Abs[v-w]];
    flowdown[prs_]:=Union[prs,With[{ovs=Select[Subsets[prs,{2}],vdist@@#==2&]},Union@@Function[{v,w},Select[Tuples[{Range[Min@@Union[First/@prs],Max@@Union[First/@prs]],Range[Min@@Union[Last/@prs],Max@@Union[Last/@prs]]}],vdist[v,#]==1&&vdist[w,#]==1&]]@@@ovs]];
    Table[Length[Select[Subsets[Tuples[Range[n],2]],flowdown[#]==#&]],{n,0,3}]

Extensions

a(5)-a(6) from Christopher Cormier, Dec 10 2019
a(7)-a(15) from Christopher Cormier, Dec 19 2019

A376743 Number of permutations (p(1),p(2),...,p(n)) of (1,2,...,n) such that p(i)-i is in {-2,-1,4} for all i=1,...,n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 5, 5, 6, 8, 11, 15, 25, 35, 46, 61, 85, 125, 175, 245, 341, 470, 650, 925, 1300, 1810, 2521, 3520, 4915, 6880, 9640, 13476, 18801, 26251, 36721, 51346, 71776, 100335, 140210, 195886, 273813, 382821, 535105, 747850, 1045220
Offset: 0

Views

Author

Michael A. Allen, Oct 03 2024

Keywords

Comments

Other sequences related to strongly restricted permutations pi(i) of i in {1,..,n} along with the sets of allowed p(i)-i (containing at least 3 elements): A000045 {-1,0,1}, A189593 {-1,0,2,3,4,5,6}, A189600 {-1,0,2,3,4,5,6,7}, A006498 {-2,0,2}, A080013 {-2,1,2}, A080014 {-2,0,1,2}, A033305 {-2,-1,1,2}, A002524 {-2,-1,0,1,2}, A080000 {-2,0,3}, A080001 {-2,1,3}, A080004 {-2,0,1,3}, A080002 {-2,2,3}, A080005 {-2,0,2,3}, A080008 {-2,1,2,3}, A080011 {-2,0,1,2,3}, A079999 {-2,-1,3}, A080003 {-2,-1,0,3}, A080006 {-2,-1,1,3}, A080009 {-2,-1,0,1,3}, A080007 {-2,-1,2,3}, A080010 {-2,-1,0,2,3}, A080012 {-2,-1,1,2,3}, A072827 {-2,-1,0,1,2,3}, A224809 {-2,0,4}, A189585 {-2,0,1,3,4}, A189581 {-2,-1,0,3,4}, A072850 {-2,-1,0,1,2,3,4}, A189587 {-2,0,1,3,4,5}, A189588 {-2,-1,0,3,4,5}, A189594 {-2,0,1,3,4,5,6}, A189595 {-2,-1,0,3,4,5,6}, A189601 {-2,0,1,3,4,5,6,7}, A189602 {-2,-1,0,3,4,5,6,7}, A224811 {-2,0,8}, A224812 {-2,0,10}, A224813 {-2,0,12}, A006500 {-3,0,3}, A079981 {-3,1,3}, A079983 {-3,0,1,3}, A079982 {-3,2,3}, A079984 {-3,0,2,3}, A079988 {-3,1,2,3}, A079989 {-3,0,1,2,3}, A079986 {-3,-1,1,3}, A079992 {-3,-1,0,1,3}, A079987 {-3,-1,2,3}, A079990 {-3,-1,0,2,3}, A079993 {-3,-1,1,2,3}, A079985 {-3,-2,2,3}, A079991 {-3,-2,0,2,3}, A079996 {-3,-2,0,1,2,3}, A079994 {-3,-2,1,2,3}, A079997 {-3,-2, -1,1,2,3}, A002526 {-3,-2,-1,0,1,2,3}, A189586 {-3,0,1,2,4}, A189583 {-3,-1,0,2,4}, A189582 {-3,-2,0,1,4}, A189584 {-3,-2,-1,0,4}, A189589 {-3,0,1,2,4,5}, A189590 {-3,-1,0,2,4,5}, A189591 {-3,-2,1,4,5}, A189592 {-3,-2,-1,0,4,5}, A224810 {-3,0,6}, A189596 {-3,0,1,2,4,5,6}, A189597 {-3,-1,0,2,4,5,6}, A189598 {-3,-2,0,1,4,5,6}, A189599 {-3,-2,-1,0,4,5,6}, A224814 {-3,0,9}, A031923 {-4,0,4}, A072856 {-4,-3, -2,-1,0,1,2,3,4}, A224815 {-4,0,8}, A154654 {-5,-4,-3,-2,-1,0,1,2,3,4,5}, A154655 {-6,-5,-4,-3, -2,-1,0,1,2,3,4,5,6}.
[Keyword "less", because this comment should be moved to the Index to the OEIS, it is not appropriate here. - N. J. A. Sloane, Oct 25 2024]

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), North-Holland, Amsterdam, 1970, pp. 755-770.

Crossrefs

See comments for other sequences related to strongly restricted permutations.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^3 - x^4 - x^6 + x^9)/(1 - x^3 - x^4 - x^5 - 2*x^6 - x^7 + 2*x^9 + 2*x^10 + x^12 - x^15),{x,0,49}],x]
    LinearRecurrence[{0, 0, 1, 1, 1, 2, 1, 0, -2, -2, 0, -1, 0, 0, 1}, {1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 5, 5, 6, 8}, 50]

Formula

a(n) = a(n-3) + a(n-4) + a(n-5) + 2*a(n-6) + a(n-7) - 2*a(n-9) - 2*a(n-10) - a(n-12) + a(n-15).
G.f.: (1 - x^3 - x^4 - x^6 + x^9)/(1 - x^3 - x^4 - x^5 - 2*x^6 - x^7 + 2*x^9 + 2*x^10 + x^12 - x^15).

A116698 Expansion of (1-x+3*x^2+x^3) / ((1-x-x^2)*(1+2*x^2)).

Original entry on oeis.org

1, 0, 2, 5, 5, 4, 13, 29, 34, 39, 89, 176, 233, 313, 610, 1115, 1597, 2328, 4181, 7277, 10946, 16687, 28657, 48416, 75025, 117297, 196418, 326003, 514229, 815656, 1346269, 2211077, 3524578, 5637351, 9227465
Offset: 0

Views

Author

Creighton Dement, Feb 23 2006

Keywords

Crossrefs

Programs

  • Magma
    A116698:= func< n | Fibonacci(n+1) -((n mod 2) -2*0^((n+1) mod 4))*2^Floor(n/2) >;
    [A116898(n): n in [0..50]]; // G. C. Greubel, Aug 24 2025
    
  • Mathematica
    CoefficientList[Series[(1-x+3x^2+x^3)/((1-x-x^2)(1+2x^2)),{x,0,100}],x] (* or *) LinearRecurrence[{1,-1,2,2},{1,0,2,5},100] (* Harvey P. Dale, May 14 2022 *)
    Table[Fibonacci[n+1] -I^(n-1)*Mod[n,2]*2^Floor[n/2], {n,0,50}] (* G. C. Greubel, Aug 24 2025 *)
  • PARI
    Vec((1-x +3*x^2 +x^3)/((1-x-x^2)*(1+2*x^2)) + O(x^40)) \\ Colin Barker, May 18 2019
    
  • SageMath
    def A116898(n): return fibonacci(n+1) - (-1)**((n-1)//2)*(n%2)*2**(n//2)
    print([A116898(n) for n in range(51)]) # G. C. Greubel, Aug 24 2025

Formula

a(2*n) = A000045(2*n+1) = A001519(n).
a(n) = a(n-1) - a(n-2) + 2*a(n-3) + 2*a(n-4) for n > 3. - Colin Barker, May 18 2019
From G. C. Greubel, Aug 24 2025: (Start)
a(n) = A000045(n+1) - (-1)^floor((n-1)/2) * (n mod 2) * 2^floor(n/2).
E.g.f.: exp(x/2)*(cosh(sqrt(5)*x/2) + (1/sqrt(5))*sinh(sqrt(5)*x/2)) - sin(sqrt(2)*x)/sqrt(2). (End)

A208743 Number of subsets of the set {1,2,...,n} which do not contain two elements whose difference is 6.

Original entry on oeis.org

2, 4, 8, 16, 32, 64, 96, 144, 216, 324, 486, 729, 1215, 2025, 3375, 5625, 9375, 15625, 25000, 40000, 64000, 102400, 163840, 262144, 425984, 692224, 1124864, 1827904, 2970344, 4826809, 7797153, 12595401, 20346417, 32867289, 53093313, 85766121, 138859434
Offset: 1

Views

Author

David Nacin, Mar 01 2012

Keywords

Examples

			If n=7 then we must count all subsets not containing both 1 and 7.  There are 2^5 subsets containing 1 and 7, giving us 2^7 - 2^5 = 48.  Thus a(7) = 96.
		

References

  • M. El-Mikkawy, T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456-4461 doi:10.1016/j.amc.2009.12.069, Table 1 k=6.

Crossrefs

Programs

  • Mathematica
    Table[Fibonacci[Floor[n/6] + 3]^Mod[n, 6] * Fibonacci[Floor[n/6] + 2]^(6 - Mod[n, 6]), {n, 1, 80}]
    LinearRecurrence[{1, 1, 0, 0, 0, -5, 5, 5, 0, 0, 0, 15, -15, -15, 0, 0, 0, 15, -15, -15, 0, 0, 0, -5, 5, 5, 0, 0, 0, -1, 1, 1}, {2, 4, 8, 16, 32, 64, 96, 144, 216, 324, 486, 729, 1215, 2025, 3375, 5625, 9375, 15625, 25000, 40000, 64000, 102400, 163840, 262144, 425984, 692224, 1124864, 1827904, 2970344, 4826809, 7797153, 12595401}, 80]
  • PARI
    Vec(x*(2 + 2*x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 10*x^6 - 6*x^7 - 14*x^8 - 16*x^9 - 14*x^10 - x^11 - 30*x^12 - 29*x^13 - 15*x^14 - 15*x^15 - 15*x^16 - 20*x^17 - 30*x^18 - 10*x^19 + 5*x^20 + 5*x^21 + 5*x^22 + 4*x^23 + 10*x^24 + 6*x^25 + x^26 + x^27 + x^28 + x^29 + 2*x^30 + x^31) / ((1 + x^2)*(1 - x - x^2)*(1 - x^2 + x^4)*(1 + x^3 - x^6)*(1 - x^3 - x^6)*(1 + 7*x^6 + x^12)) + O(x^30)) \\ Colin Barker, Feb 23 2017

Formula

a(n) = F(floor(n/6) + 3)^(n mod 6)*F(floor(n/6) + 2)^(6 - (n mod 6)) where F(n) is the n-th Fibonacci number.
a(n) = a(n-1) + a(n-2) - 5*a(n-6) + 5*a(n-7) + 5*a(n-8) + 15*a(n-12) - 15*a(n-13) - 15*a(n-14) + 15*a(n-18) - 15*a(n-19) - 15*a(n-20) - 5*a(n-24) + 5*a(n-25) + 5*a(n-26) - a(n-30) + a(n-31) + a(n-32).
G.f.: x*(2 + 2*x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 10*x^6 - 6*x^7 - 14*x^8 - 16*x^9 - 14*x^10 - x^11 - 30*x^12 - 29*x^13 - 15*x^14 - 15*x^15 - 15*x^16 - 20*x^17 - 30*x^18 - 10*x^19 + 5*x^20 + 5*x^21 + 5*x^22 + 4*x^23 + 10*x^24 + 6*x^25 + x^26 + x^27 + x^28 + x^29 + 2*x^30 + x^31) / ((1 + x^2)*(1 - x - x^2)*(1 - x^2 + x^4)*(1 + x^3 - x^6)*(1 - x^3 - x^6)*(1 + 7*x^6 + x^12)). - Colin Barker, Feb 23 2017

A246690 Number A(n,k) of compositions of n into parts of the k-th list of distinct parts in the order given by A246688; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 1, 0, 1, 1, 5, 0, 1, 0, 1, 1, 0, 2, 0, 8, 1, 1, 0, 1, 0, 1, 0, 3, 0, 13, 0, 1, 0, 1, 0, 1, 1, 1, 4, 1, 21, 1, 1, 0, 1, 1, 0, 1, 2, 0, 6, 0, 34, 0, 1, 0, 1, 1, 2, 0, 1, 3, 0, 9, 0, 55, 1, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 01 2014

Keywords

Comments

The first lists of distinct parts in the order given by A246688 are: 0:[], 1:[1], 2:[2], 3:[1,2], 4:[3], 5:[1,3], 6:[4], 7:[1,4], 8:[2,3], 9:[5], 10:[1,2,3], 11:[1,5], 12:[2,4], 13:[6], 14:[1,2,4], 15:[1,6], 16:[2,5], 17:[3,4], 18:[7], 19:[1,2,5], 20:[1,3,4], ... .

Examples

			Square array A(n,k) begins:
  1, 1, 1,  1, 1,  1, 1,  1, 1, 1,   1, 1, 1, 1,   1, ...
  0, 1, 0,  1, 0,  1, 0,  1, 0, 0,   1, 1, 0, 0,   1, ...
  0, 1, 1,  2, 0,  1, 0,  1, 1, 0,   2, 1, 1, 0,   2, ...
  0, 1, 0,  3, 1,  2, 0,  1, 1, 0,   4, 1, 0, 0,   3, ...
  0, 1, 1,  5, 0,  3, 1,  2, 1, 0,   7, 1, 2, 0,   6, ...
  0, 1, 0,  8, 0,  4, 0,  3, 2, 1,  13, 2, 0, 0,  10, ...
  0, 1, 1, 13, 1,  6, 0,  4, 2, 0,  24, 3, 3, 1,  18, ...
  0, 1, 0, 21, 0,  9, 0,  5, 3, 0,  44, 4, 0, 0,  31, ...
  0, 1, 1, 34, 0, 13, 1,  7, 4, 0,  81, 5, 5, 0,  55, ...
  0, 1, 0, 55, 1, 19, 0, 10, 5, 0, 149, 6, 0, 0,  96, ...
  0, 1, 1, 89, 0, 28, 0, 14, 7, 1, 274, 8, 8, 0, 169, ...
		

Crossrefs

Main diagonal gives A246691.
Cf. A246688, A246720 (the same for partitions).

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i>n, [],
          [map(x->[i, x[]], b(n-i, i+1))[], b(n, i+1)[]]))
        end:
    f:= proc() local i, l; i, l:=0, [];
          proc(n) while n>=nops(l)
            do l:=[l[], b(i, 1)[]]; i:=i+1 od; l[n+1]
          end
        end():
    g:= proc(n, l) option remember; `if`(n=0, 1,
          add(`if`(i>n, 0, g(n-i, l)), i=l))
        end:
    A:= (n, k)-> g(n, f(k)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {{}}, If[i>n, {}, Join[Prepend[#, i]& /@ b[n - i, i + 1], b[n, i + 1]]]];
    f = Module[{i = 0, l = {}}, Function[n, While[n >= Length[l], l = Join[l, b[i, 1]]; i++]; l[[n + 1]]]];
    g[n_, l_] := g[n, l] = If[n==0, 1, Sum[If[i>n, 0, g[n - i, l]], {i, l}]];
    A[n_, k_] := g[n, f[k]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)

A171645 Partial products of Product_{n=1..inf.} (p(n)/p(n-1)*p(n)/p(n-1)), = 2*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7)*(11/7)*...; p = primes, A000040, a(1) = 2.

Original entry on oeis.org

2, 4, 8, 12, 18, 30, 50, 70, 98, 154, 242, 286, 338, 442, 578, 646, 722, 874, 1058, 1334, 1682, 1798, 1922, 2294, 2738
Offset: 1

Views

Author

Gary W. Adamson, Dec 13 2009

Keywords

Comments

Analogous formulas using A000041 terms = A171646; Fibonacci numbers, A006498; factorials, A010551.

Examples

			a(10) = 154 = 2*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7).
		

Crossrefs

Programs

  • Mathematica
    FoldList[Times,Join[{2,2,2},Flatten[{#[[2]]/#[[1]],#[[2]]/#[[1]]}&/@Partition[Prime[Range[20]],2,1]]]] (* Harvey P. Dale, Oct 02 2024 *)

Formula

Partial products of Product_{n=1..inf.} (p(n)/p(n-1)*p(n)/p(n-1)), =
2*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7)*(11/7)*...; p = primes,
A000040, a(1) = 2.
a(n)=2*A057602(n-1). [From R. J. Mathar, Dec 15 2009]

A171646 a(1) = 1, then partial products of Product_{n>=1} (p(n)/p(n-1)*p(n)/p(n-1)) = 1*1*1*(2)*(2)*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*...*; p = partition numbers, A000041 starting (1, 2, 3, 5, ...).

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 9, 15, 25, 35, 49, 77, 121, 165, 225, 330, 484, 660, 900, 1260, 1764, 2352, 3136, 4312, 5929, 7777, 10201, 13635, 18225, 23760, 30976, 40656, 53361, 68607, 88209, 114345, 148225, 188650, 240100, 307230
Offset: 1

Views

Author

Gary W. Adamson, Dec 13 2009

Keywords

Comments

A006498 = analogous sequence using the Fibonacci numbers.
A171645 = .............................Primes, analogous formula.
A010551 = .............................Factorial numbers, analogous formula.

Examples

			a(12) = 77 = 1*1*1*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7).
		

Crossrefs

Programs

  • Maple
    A171646t := proc(n)
        local nh;
        nh := floor(n/2) ;
        combinat[numbpart](nh)/combinat[numbpart](nh-1) ;
    end proc:
    A171646 := proc(n)
        mul(A171646t(i),i=2..n) ;
    end proc:
    1,seq(A171646(n),n=2..40) ; # R. J. Mathar, Jul 21 2015

Formula

a(1) = 1, then partial products of Product_{n>=1} (p(n)/p(n-1)*p(n)/p(n-1)) = 1*1*1*(2)*(2)*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*...; p = partition numbers, A000041 starting (1, 2, 3, 5, ...).

Extensions

Corrected by R. J. Mathar, Jul 21 2015

A178534 Triangle T(n,k) read by rows. T(n,1) = A000045(n+1), k > 1: T(n,k) = (Sum_{i=1..k-1} T(n-i,k-1)) - (Sum_{i=1..k-1} T(n-i,k)).

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 5, 2, 1, 1, 8, 3, 1, 1, 1, 13, 5, 3, 1, 1, 1, 21, 8, 4, 2, 1, 1, 1, 34, 13, 6, 4, 2, 1, 1, 1, 55, 21, 11, 6, 3, 2, 1, 1, 1, 89, 34, 17, 9, 6, 3, 2, 1, 1, 1, 144, 55, 27, 15, 9, 5, 3, 2, 1, 1, 1, 233, 89, 45, 25, 14, 9, 5, 3, 2, 1, 1, 1, 377, 144, 72, 40, 23, 14, 8, 5, 3, 2, 1, 1, 1
Offset: 1

Views

Author

Mats Granvik, May 29 2010

Keywords

Examples

			Table begins:
   1;
   2,  1;
   3,  1,  1;
   5,  2,  1,  1;
   8,  3,  1,  1,  1;
  13,  5,  3,  1,  1,  1;
  21,  8,  4,  2,  1,  1,  1;
  34, 13,  6,  4,  2,  1,  1,  1;
  55, 21, 11,  6,  3,  2,  1,  1,  1;
  89, 34, 17,  9,  6,  3,  2,  1,  1,  1;
		

Crossrefs

Cf. 1st column=A000045(n+1), 2nd=A000045, 3rd=A093040, 4th=A006498. Matrix inverse of A178535.

Programs

  • Maple
    A178534 := proc(n, k)
        option remember;
        if k= 1 then
            combinat[fibonacci](n+1) ;
        elif k > n then
            0 ;
        else
            add(procname(n-i, k-1), i=1..k-1)-add(procname(n-i, k), i=1..k-1) ;
        end if;
    end proc:
    seq(seq(A178534(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Oct 28 2010
  • Mathematica
    T[n_, 1] := Fibonacci[n+1];
    T[n_, k_] := T[n, k] = If[k > n, 0, Sum[T[n-i, k-1], {i, 1, k-1}] - Sum[T[n-i, k], {i, 1, k-1}]];
    Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 23 2024 *)
  • PARI
    T(n,k)=(n % k==0) + sum(j=1,n\k,fibonacci(n-j*k)) \\ Andrew Howroyd, Feb 23 2024
  • Python
    from sympy.core.cache import cacheit
    from sympy import fibonacci
    @cacheit
    def A(n, k): return fibonacci(n + 1) if k==1 else 0 if k>n else sum([A(n - i, k - 1) for i in range(1, k)]) - sum([A(n - i, k) for i in range(1, k)])
    for n in range(1, 13): print([A(n, k) for k in range(1, n + 1)]) # Indranil Ghosh, Sep 15 2017
    

Formula

T(n,1) = A000045(n+1), k>1: T(n,k) = Sum_{i=1..k-1} T(n-i,k-1) - Sum_{i=1..k-1} T(n-i,k).
T(n,k) = A129713*A051731. - Mats Granvik, Oct 22 2010
From R. J. Mathar, Sep 16 2017: (Start)
G.f. 3rd column: x^3*(1+x)/((1-x-x^2)*(1+x+x^2)).
G.f. 4th column: x^4/((1-x-x^2)*(1+x^2)) =x^4*(1+x)/((1-x-x^2)*(1+x+x^2+x^3)).
G.f. 5th column: x^5*(1+x)/((1-x-x^2)*(1+x+x^2+x^3+x^4)).
G.f. 6th column: x^6/((1-x-x^2)*(1+x+x^2)*(1-x+x^2)) = x^6*(1+x)/((1-x-x^2)*(1+x+x^2+x^3+x^4+x^5)).
G.f. 7th column: x^7*(1+x)/((1-x-x^2)*(1+x+x^2+x^3+x^4+x^5+x^6)).
G.f. 8th column: x^8/((1-x-x^2)*(1+x^2)*(1+x^4)) = x^8*(1+x)/((1-x-x^2)*(1+x+x^2+x^3+x^4+x^5+x^6+x^7)).
Conjecture (by extrapolating): G.f. k-th column: x^k*(1-x^2)/((1-x-x^2)*(1-x^k)).
G.f.: (1-x^2)/(1-x-x^2)*Sum_{i>=1} (x*y)^i/(1-x^i) = (1-x^2)/(1-x-x^2)*A051731(x,y). (End)
T(n,k) = A051731(n,k) + Sum_{j=1..floor(n/k)} Fibonacci(n-j*k). - Andrew Howroyd, Feb 23 2024

A191373 Sum of binomial coefficients C(i+j,i) modulo 2 over all pairs (i,j) of positive integers satisfying 5i+j=n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 2, 4, 1, 2, 2, 4, 2, 3, 3, 5, 1, 3, 2, 5, 2, 3, 4, 6, 1, 3, 2, 6, 2, 3, 4, 6, 2, 4, 3, 7, 3, 5, 5, 8, 1, 4, 3, 8, 2, 3, 5, 8, 2, 4, 3, 8, 4, 6, 6, 9, 1, 5, 3, 9, 2, 3, 6, 9, 2, 4, 3, 9
Offset: 0

Views

Author

Johannes W. Meijer, Jun 05 2011

Keywords

Comments

The Le1{1,5} and Le2{5,1} triangle sums of Sierpinski’s triangle A047999 equal this sequence; see the formulas for their definitions. The Le1{1,5} and Le2{5,1} triangle sums are similar to the Kn11 and Kn21 sums, the Ca1 and Ca2 sums, and the Gi1 and Gi2 sums, see A180662.
Some A191373(2^n-p) sequences, 0<=p<=32, lead to known sequences, see the crossrefs.

Crossrefs

Cf. A001316 (1,1), A002487 (2,1), A120562 (3,1), A112970 (4,1), A191373 (5,1)
Cf. A000012 (p=0), A006498 (p=1, p=2, p=4, p=8, p=16, p=32), A070550 (p=3, p=6, p=12, p=24), A000071 (p=15, p=30), A115008 (p=23).

Programs

  • Maple
    A191373:=proc(n) option remember; if n <0 then A191373(n):=0 fi: if (n=0 or n=1) then 1 elif n mod 2 = 0 then A191373(n/2) else A191373((n-1)/2) + A191373(((n-1)/2)-2); fi; end: seq(A191373(n),n=0..75);

Formula

a(2*n) = a(n) and a(2*n+1) = a(n) + a(n-2) with a(0) = 1, a(1) = 1 and a(n)=0 for n<=-1.
a(n) = Le1{1,5}(n) = add(T(n-4*k,k),k=0..floor(n/5))
a(n) = Le1{1,5}(n) = sum(binomial(i + j, i) mod 2 | (i + 5*j) = n)
a(n) = Le2{5,1}(n) = add(T(n-4*k,n-5*k),k=0..floor(n/5))
a(n) = Le2{5,1}(n) = sum(binomial(i + j, i) mod 2 | (5*i + j) = n)
G.f.: Product_{n>=0} (1+x^(2^n)+x^(5*2^n)).
G.f. A(x) satisfies: A(x) = (1 + x + x^5) * A(x^2). - Ilya Gutkovskiy, Jul 09 2019
Previous Showing 41-50 of 61 results. Next