cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A085850 Decimal expansion of hard square entropy constant.

Original entry on oeis.org

1, 5, 0, 3, 0, 4, 8, 0, 8, 2, 4, 7, 5, 3, 3, 2, 2, 6, 4, 3, 2, 2, 0, 6, 6, 3, 2, 9, 4, 7, 5, 5, 5, 3, 6, 8, 9, 3, 8, 5, 7, 8, 1, 0
Offset: 1

Views

Author

Eric W. Weisstein, Jul 05 2003

Keywords

Examples

			1.503048082...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.12, p. 342.

Crossrefs

Extensions

More terms from R. J. Mathar, Jul 18 2007
Terms a(19)-a(44) computed R. J. Baxter, 1998

A181031 Array read by antidiagonals: T(n,k) = number of n X k binary matrices with no initial bit string in any row or column divisible by 4.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 7, 5, 1, 1, 8, 17, 17, 8, 1, 1, 13, 41, 63, 41, 13, 1, 1, 21, 99, 227, 227, 99, 21, 1, 1, 34, 239, 827, 1234, 827, 239, 34, 1, 1, 55, 577, 2999, 6743, 6743, 2999, 577, 55, 1, 1, 89, 1393, 10897, 36787, 55447, 36787, 10897, 1393, 89, 1, 1, 144
Offset: 1

Views

Author

R. H. Hardin, Sep 30 2010

Keywords

Comments

A089980 is essentially the same array (see the Comments by Steve Butler in A006506). - N. J. A. Sloane, Jan 27 2015

Examples

			Table starts
.1..1....1......1.......1.........1...........1............1..............1
.1..2....3......5.......8........13..........21...........34.............55
.1..3....7.....17......41........99.........239..........577...........1393
.1..5...17.....63.....227.......827........2999........10897..........39561
.1..8...41....227....1234......6743.......36787.......200798........1095851
.1.13...99....827....6743.....55447......454385......3729091.......30584687
.1.21..239...2999...36787....454385.....5598861.....69050253......851302029
.1.34..577..10897..200798...3729091....69050253...1280128950....23720149995
.1.55.1393..39561.1095851..30584687...851302029..23720149995...660647962955
.1.89.3363.143677.5980913.250916131.10496827403.439621976195.18403310404291
Some solutions for 5X5
..1..1..1..1..1....1..1..1..1..1....1..1..1..1..1....1..1..1..1..1
..1..0..1..0..1....1..0..1..0..1....1..0..1..0..1....1..0..1..0..1
..1..1..0..1..0....1..1..0..1..0....1..1..0..1..0....1..1..0..1..0
..1..0..1..0..1....1..0..1..0..1....1..0..1..0..1....1..0..1..0..1
..1..1..0..1..0....1..1..0..1..1....1..1..1..1..0....1..1..1..1..1
		

Crossrefs

Cf. A089980.

A066865 Number of binary arrangements without adjacent 1's on n X n staggered hexagonal torus bent for odd n.

Original entry on oeis.org

1, 5, 22, 217, 4726, 164258, 14840533, 1834600977, 669877863205, 296979228487760, 434542100979981567, 692625866382651263578, 4053364289624915167879497, 23237986479606982160703729647, 543749373021017146939376423644362, 11213018647250714014261414954480048385
Offset: 1

Views

Author

R. H. Hardin, Jan 25 2002

Keywords

Examples

			Neighbors for n=4:
\|/ | \|/ |
-o--o--o--o-
 | /|\ | /|\
\|/ | \|/ |
-o--o--o--o-
 | /|\ | /|\
\|/ | \|/ |
-o--o--o--o-
 | /|\ | /|\
\|/ | \|/ |
-o--o--o--o-
 | /|\ | /|\
Neighbors for n=5:
\|/ | \|/ | \|/
 o--o--o--o--o
/| /|\ | /|\ |\
\|/ | \|/ | \|/
 o--o--o--o--o
/| /|\ | /|\ |\
\|/ | \|/ | \|/
 o--o--o--o--o
/| /|\ | /|\ |\
\|/ | \|/ | \|/
 o--o--o--o--o
/| /|\ | /|\ |\
\|/ | \|/ | \|/
 o--o--o--o--o
/| /|\ | /|\ |\
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
  • J. Katzenelson and R. P. Kurshan, S/R: A Language for Specifying Protocols and Other Coordinating Processes, pp. 286-292 in Proc. IEEE Conf. Comput. Comm., 1986.

Crossrefs

Cf. A006506, A027683, A066863, A066864, A066866, A067967 (shifted instead of bent).
Row sums of A067015.

Extensions

More terms from Sean A. Irvine, Nov 18 2023

A212270 Number of ways to place k non-attacking wazirs on an n x n cylindrical chessboard, summed over all k >= 0.

Original entry on oeis.org

2, 7, 43, 933, 36211, 3557711, 746156517, 363549830913, 394677987525997, 974602314570939359, 5418730454986467701985, 68176187476467835406646029, 1936241516342334422813929891295, 124281423643836238320564876791634465, 18018270577720149773239661332878801006033
Offset: 1

Views

Author

Vaclav Kotesovec, May 12 2012

Keywords

Comments

Wazir is a leaper [0,1].

Crossrefs

Main diagonal of A286513.

Formula

Limit n ->infinity (a(n))^(1/n^2) is the hard square entropy constant A085850.

A066863 Number of binary arrangements without adjacent 1's on n X n staggered hexagonal grid.

Original entry on oeis.org

2, 6, 43, 557, 14432, 719469, 70372090, 13351521479, 4941545691252, 3559349503024593, 4993739972681894885, 13642580224488264353504, 72582736229683196932680697, 751993955499337790653321567382, 15172223086707160824288341875907978
Offset: 1

Views

Author

R. H. Hardin, Jan 25 2002

Keywords

Examples

			Neighbors for n=4:
o--o--o--o
| /|\ | /|
|/ | \|/ |
o--o--o--o
| /|\ | /|
|/ | \|/ |
o--o--o--o
| /|\ | /|
|/ | \|/ |
o--o--o--o
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
  • J. Katzenelson and R. P. Kurshan, S/R: A Language for Specifying Protocols and Other Coordinating Processes, pp. 286-292 in Proc. IEEE Conf. Comput. Comm., 1986.

Crossrefs

Extensions

More terms from Sean A. Irvine, Nov 15 2023

A089980 Array read by antidiagonals: T(n,m) = number of independent sets in the grid graph P_n X P_m.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 7, 5, 1, 1, 8, 17, 17, 8, 1, 1, 13, 41, 63, 41, 13, 1, 1, 21, 99, 227, 227, 99, 21, 1, 1, 34, 239, 827, 1234, 827, 239, 34, 1, 1, 55, 577, 2999, 6743, 6743, 2999, 577, 55, 1, 1, 89, 1393, 10897, 36787, 55447, 36787, 10897, 1393, 89, 1
Offset: 0

Views

Author

Mitch Harris, Nov 17 2003

Keywords

Comments

This table is indexed starting at 0. The table in A089934 is 1 based.
A181031 is essentially the same array (see the Comments by Steve Butler in A006506). - N. J. A. Sloane, Jan 27 2015

Examples

			Square array T(n,m) begins:
  1,  1,  1,   1,    1,     1, ...
  1,  2,  3,   5,    8,    13, ...
  1,  3,  7,  17,   41,    99, ...
  1,  5, 17,  63,  227,   827, ...
  1,  8, 41, 227, 1234,  6743, ...
  1, 13, 99, 827, 6743, 55447, ...
		

Crossrefs

Main entry: A089934.
Main diagonal gives A006506.
Cf. A181031.

A054867 Number of non-attacking configurations on a diamond of size n, where a prince attacks the four adjacent non-diagonal squares.

Original entry on oeis.org

1, 2, 17, 689, 139344, 142999897, 748437606081, 19999400591072512, 2728539172202554958697, 1900346273206544901717879089, 6755797872872106084596492075448192, 122584407857548123729431742141838309441329, 11352604691637658946858196503018301306800588837281
Offset: 0

Views

Author

Matti De Craene (Matti.DeCraene(AT)rug.ac.be), May 14 2000

Keywords

Comments

A diamond of size n X n contains (n^2 + (n-1)^2) = A001844(n-1) squares.
For n > 0, a(n) is the number of ways to place non-adjacent counters on the black squares of a 2n-1 X 2n-1 checker board. The checker board is such that the black squares are in the corners. - Andrew Howroyd, Jan 16 2020

Examples

			From _Andrew Howroyd_, Jan 16 2020: (Start)
Case n=2: The grid consists of 5 squares as shown below.
        __
     __|__|__
    |__|__|__|
       |__|
If a prince is placed on the central square then a prince cannot be placed on the other 4 squares, otherwise princes can be placed in any combination. The total number of non-attacking configurations is then 1 + 2^4 = 17, so a(2) = 17.
.
Case n=3: The grid consists of 13 squares as shown below:
           __
        __|__|__
     __|__|__|__|__
    |__|__|__|__|__|
       |__|__|__|
          |__|
The total number of non-attacking configurations of princes is 689 so a(3) = 689.
(End)
		

Crossrefs

Main diagonal of A331406.

Extensions

a(0)=1 prepended and terms a(5) and beyond from Andrew Howroyd, Jan 15 2020

A197048 Number of n X n 0..4 arrays with each element equal to the number of its horizontal and vertical zero neighbors.

Original entry on oeis.org

1, 2, 10, 42, 358, 4468, 88056, 2745186, 134355866, 10264692132, 1234801357470, 232966546265096, 68939282741912248
Offset: 1

Views

Author

R. H. Hardin, Oct 09 2011

Keywords

Comments

Every 0 is next to 0 0's, every 1 is next to 1 0's, every 2 is next to 2 0's, every 3 is next to 3 0's, every 4 is next to 4 0's.
Also, the number of maximal independent vertex sets in the grid graph P_n X P_n. - Andrew Howroyd, May 16 2017

Examples

			Some solutions for n=4
..0..2..0..2....2..0..1..1....2..0..3..0....0..3..0..2....1..0..3..0
..1..1..2..0....0..3..1..0....0..4..0..2....3..0..3..0....1..2..0..3
..2..0..2..1....3..0..2..1....3..0..2..1....0..2..1..1....0..1..3..0
..0..3..0..1....0..3..0..1....0..2..1..0....1..1..0..1....1..1..0..2
		

Crossrefs

Diagonal of A197054.
Cf. A006506 (independent vertex sets), A133515 (dominating sets).

Programs

A050974 Number of binary arrangements on n X n array without three adjacent 1's in a row or column.

Original entry on oeis.org

1, 2, 16, 265, 16561, 3157010, 1828904402, 3323590649777, 18691199385898465, 325778072452564800064, 17617718915229579206450786, 2954164381835835259001326344913, 1536134628973698280539373190731911729, 2477137610106747308204461168746042225266836, 12387488188151269567355592399321080831513078632498, 192102098800681202990688566451981906679020804069237862571, 9238409697848267958752630399467598421213391733838644131510525089
Offset: 0

Views

Author

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.

Crossrefs

Any connected three 1's gives A067968.
Cf. A006506. Diagonal of A202471.

Programs

  • Mathematica
    t[m_] := t[m] = Map[ArrayReshape[#, {m, m}] &, Tuples[{0, 1}, m^2]]; a[m_] := a[m] = Count[Table[AnyTrue[Flatten[{Table[Equal[1, t[m][[n, a, b]], t[m][[n, a, b + 1]], t[m][[n, a, b + 2]]], {a, 1, m}, {b, 1, m - 2}], Table[Equal[1, t[m][[n, a, b]], t[m][[n, a + 1, b]], t[m][[n, a + 2, b]]], {a, 1, m - 2}, {b, 1, m}]}], TrueQ], {n, 1, 2^(m^2)}], False]; (* Robert P. P. McKone, Jan 04 2022 *)

Extensions

More terms from R. H. Hardin, Feb 02 2002
a(0)=1 prepended and a(13)-a(16) from Peter J. Taylor, Sep 26 2024

A182562 Number of ways to place k non-attacking semi-knights on an n x n chessboard, sum over all k>=0.

Original entry on oeis.org

2, 16, 288, 11664, 1458000, 506250000, 414720000000, 869730877440000, 5045702916833280000, 77297454895962562560000, 3017525202366485003182080000, 307389127582207654481154908160000, 83016370640108703579427655610531840000, 58770343311359208383258439665073059266560000
Offset: 1

Views

Author

Vaclav Kotesovec, May 05 2012

Keywords

Comments

Semi-knight is a semi-leaper [1,2]. Moves of a semi-knight are allowed only in [2,1] and [-2,-1]. See also semi-bishops (A187235).

Crossrefs

Programs

  • Mathematica
    Table[If[EvenQ[n],Fibonacci[n/2+2]^(n+2)*Product[Fibonacci[j+2]^4,{j,1,n/2-1}],Fibonacci[(n+1)/2+2]^((n+1)/2)*Fibonacci[(n-1)/2+2]^((n-1)/2)*Product[Fibonacci[j+2]^4,{j,1,(n-1)/2}]],{n,1,20}]

Formula

a(n) = F(n/2+2)^(n+2)*prod(j=1,n/2-1,F(j+2)^4) if n is even, F((n+1)/2+2)^((n+1)/2)*F((n-1)/2+2)^((n-1)/2)*prod(j=1,(n-1)/2,F(j+2)^4) if n is odd, where F(n) = A000045(n) is the n-th Fibonacci number.
a(n) is asymptotic to C^4*((1+sqrt(5))/2)^((n+2)*(n+4))/5^(3/2*(n+2)), where C=1.226742010720353244... is Fibonacci Factorial Constant, see A062073.
Previous Showing 21-30 of 37 results. Next