cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 485 results. Next

A280683 Number of ways to write n as an ordered sum of two positive squarefree semiprimes (A006881).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 2, 0, 2, 3, 2, 1, 2, 4, 0, 0, 2, 6, 2, 0, 2, 4, 4, 1, 4, 5, 4, 0, 4, 8, 6, 2, 0, 5, 4, 4, 4, 6, 4, 0, 4, 8, 10, 0, 2, 4, 6, 3, 6, 9, 4, 3, 6, 14, 8, 2, 4, 5, 8, 3, 10, 8, 4, 0, 8, 12, 4, 4, 4, 8, 6, 8, 12, 11, 6, 2, 10, 12, 12, 4, 8, 12, 12, 5, 12, 10, 4, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 07 2017

Keywords

Comments

Conjecture: a(n) > 0 for n > 82 (see comment in A006881 from Richard R. Forberg).

Examples

			a(20) = 3 because we have [14, 6], [10, 10] and [6, 14].
		

Crossrefs

Programs

  • Mathematica
    nmax = 106; Rest[CoefficientList[Series[(Sum[MoebiusMu[k]^2 Floor[PrimeOmega[k]/2] Floor[2/PrimeOmega[k]] x^k, {k, 2, nmax}])^2, {x, 0, nmax}], x]]

Formula

G.f.: (Sum_{k>=2} mu(k)^2*floor(bigomega(k)/2)*floor(2/bigomega(k))*x^k)^2, where mu(k) is the Moebius function (A008683) and bigomega(k) is the number of prime divisors of k counted with multiplicity (A001222).
a(n) = Sum_{k=1..n-1} c(k) * c(n-k), where c = A280710. - Wesley Ivan Hurt, Jan 07 2024

A324332 Numbers m such that A324331(m) = (m-1)^2 - phi(m)*sigma(m) is a square, even though they are not squarefree semiprimes (A006881).

Original entry on oeis.org

12, 20, 24, 40, 42, 44, 45, 48, 63, 72, 80, 96, 104, 105, 108, 132, 135, 160, 189, 190, 192, 200, 216, 275, 320, 342, 384, 385, 399, 405, 429, 452, 456, 465, 567, 575, 610, 637, 639, 640, 648, 693, 768, 783, 848, 969, 988, 1000, 1015, 1044, 1098, 1105, 1127, 1210, 1215
Offset: 1

Views

Author

Michel Marcus, Feb 23 2019

Keywords

Comments

If m is a squarefree semiprime, then A324331(m) is a square. But the converse is not always true.

Examples

			A324331(45) = 64, a square, even though 45 is not squarefree semiprime, so 45 is a term.
		

Crossrefs

Programs

  • PARI
    f(n) = (n-1)^2 - eulerphi(n)*sigma(n); \\ A324331
    isok(n) = !((bigomega(n) == 2) && issquarefree(n)) && issquare(f(n));

A339191 Partial products of squarefree semiprimes (A006881).

Original entry on oeis.org

6, 60, 840, 12600, 264600, 5821200, 151351200, 4994589600, 169816046400, 5943561624000, 225855341712000, 8808358326768000, 405184483031328000, 20664408634597728000, 1136542474902875040000, 64782921069463877280000, 3757409422028904882240000
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2020

Keywords

Comments

A squarefree semiprime is a product of any two distinct prime numbers.
Do all terms belong to A242031 (weakly decreasing prime signature)?

Examples

			The sequence of terms together with their prime indices begins:
          6: {1,2}
         60: {1,1,2,3}
        840: {1,1,1,2,3,4}
      12600: {1,1,1,2,2,3,3,4}
     264600: {1,1,1,2,2,2,3,3,4,4}
    5821200: {1,1,1,1,2,2,2,3,3,4,4,5}
  151351200: {1,1,1,1,1,2,2,2,3,3,4,4,5,6}
The sequence of terms together with their prime signatures begins:
                   6: (1,1)
                  60: (2,1,1)
                 840: (3,1,1,1)
               12600: (3,2,2,1)
              264600: (3,3,2,2)
             5821200: (4,3,2,2,1)
           151351200: (5,3,2,2,1,1)
          4994589600: (5,4,2,2,2,1)
        169816046400: (6,4,2,2,2,1,1)
       5943561624000: (6,4,3,3,2,1,1)
     225855341712000: (7,4,3,3,2,1,1,1)
    8808358326768000: (7,5,3,3,2,2,1,1)
  405184483031328000: (8,5,3,3,2,2,1,1,1)
		

Crossrefs

A000040 lists the primes, with partial products A002110 (primorials).
A001358 lists semiprimes, with partial products A112141.
A002100 counts partitions into squarefree semiprimes (restricted: A338903)
A000142 lists factorial numbers, with partial products A000178.
A005117 lists squarefree numbers, with partial products A111059.
A006881 lists squarefree semiprimes, with partial sums A168472.
A166237 gives first differences of squarefree semiprimes.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A338898/A338912/A338913 give prime indices of semiprimes.
A338899/A270650/A270652 give prime indices of squarefree semiprimes.
A338901 gives first appearances in the list of squarefree semiprimes.
A339113 gives products of primes of squarefree semiprime index.

Programs

  • Mathematica
    FoldList[Times,Select[Range[20],SquareFreeQ[#]&&PrimeOmega[#]==2&]]

A340380 Numbers whose odd part is a squarefree semiprime (A006881); numbers of the form 2^k * p * q, with k >= 0, and distinct odd primes p and q.

Original entry on oeis.org

15, 21, 30, 33, 35, 39, 42, 51, 55, 57, 60, 65, 66, 69, 70, 77, 78, 84, 85, 87, 91, 93, 95, 102, 110, 111, 114, 115, 119, 120, 123, 129, 130, 132, 133, 138, 140, 141, 143, 145, 154, 155, 156, 159, 161, 168, 170, 174, 177, 182, 183, 185, 186, 187, 190, 201, 203, 204, 205, 209, 213, 215, 217, 219, 220, 221, 222, 228, 230
Offset: 1

Views

Author

Antti Karttunen, Jan 06 2021

Keywords

Crossrefs

Cf. A000265, A006881, A280710, A340370 (characteristic function).
Subsequence of A285800, from which this differs for the first time at n=25, where a(25) = 110, while A285800(25) = 105, which is missing from this sequence.

Programs

  • Mathematica
    semiQ[n_] := FactorInteger[n][[;;,2]] == {1, 1}; Select[Range[230], semiQ[#/2^IntegerExponent[#, 2]] &] (* Amiram Eldar, Jan 03 2022 *)
  • PARI
    isA340380(n) = A340370(n); \\ Uses the program given in A340370.

Formula

Sum_{n>=1} 1/a(n)^s = (2^s/(2^s-1)) * ((1/2)*(P(s)^2 - P(2*s)) + 1/4^s - P(s)/2^s), for s>1, where P is the prime zeta function. - Amiram Eldar, Jan 03 2022

A176885 Let p*q = A006881(n) be the n-th number that is the product of two distinct primes, with p = prime(i), q=prime(j); a(n) = p^j - q^i.

Original entry on oeis.org

1, 3, 9, 2, 32, 21, 51, 122, 111, 282, 237, 560, 489, 1898, 1794, 6200, 995, 2017, 13428, 19154, 4059, 2166, 8151, 73212, 16341, 58208, 89088, 176186, 32721, 383766, 65483, 530072, 1940958, 131013, 740022, 262083, 1592642, 4781120, 5634480, 524221
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 28 2010

Keywords

Examples

			For n=3, A006881(3) = 14 = 2*7, p=2, i=1, q=7, j=4; a(n) = 2^4-7^1 = 9.
		

Crossrefs

Cf. A006881.

Programs

Extensions

a(14) and a(15) corrected and sequence extended by R. J. Mathar, May 01 2010
Definition clarified by N. J. A. Sloane, Feb 16 2019

A192599 Let N = pq (pA006881(n). Then a(n) = | (p^2-q)(q-1)/2 |.

Original entry on oeis.org

1, 2, 9, 8, 6, 35, 54, 10, 104, 54, 135, 24, 209, 64, 70, 90, 350, 405, 72, 154, 594, 190, 740, 64, 819, 280, 216, 330, 989, 54, 1274, 504, 22, 1595, 256, 1710, 640, 714, 270, 2079, 874, 2345, 648, 56, 2484, 90, 2925, 1144, 286, 3239, 1450, 3740, 1560, 216, 832, 4464, 1914, 4850, 280, 320, 5049
Offset: 1

Views

Author

J. M. Bergot, Jul 04 2011

Keywords

Comments

This is the area of the triangle with vertices (1,p), (p,q), (q,pq).
A200050 gives the record values. [Arkadiusz Wesolowski, Apr 18 2012]

Examples

			For p*q=3*5=15, |(3^2 + 5^2 - 5*(3^2 +1))/2| = 8
		

Extensions

Definition simplified by N. J. A. Sloane, Jul 10 2011

A271101 Squarefree semiprimes (A006881) whose average prime factor is prime.

Original entry on oeis.org

21, 33, 57, 69, 85, 93, 129, 133, 145, 177, 205, 213, 217, 237, 249, 253, 265, 309, 393, 417, 445, 469, 489, 493, 505, 517, 553, 565, 573, 597, 633, 669, 685, 697, 753, 781, 793, 813, 817, 865, 889, 913, 933, 949, 973, 985, 993, 1057, 1077, 1137, 1149, 1177, 1257, 1273, 1285, 1329
Offset: 1

Views

Author

Antonio Roldán, Mar 30 2016

Keywords

Comments

Sum of factors of a(n) if semiprime (product 2*p, with p prime).
This sequence is subsequence of A006881, A089765, A187073, A108633 and A213015.
This sequence is also subsequence of A045835, because sopfr(omega(a(n))) = omega(sopfr(a(n))): sopfr(omega(a(n)))=sopfr(2)=2, and omega(sopfr(a(n)))=omega(2*p)=2 (p prime, p>2, average prime factor).

Examples

			133 is in the sequence because 133 is a squarefree semiprime: 133=7*19, and (7+19)/2=13, a prime number.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # for terms <= N
    Primes:= select(isprime, [seq(i, i=3..N/3)]):
    SP:= [seq(seq([p, q], q = select(`<=`, Primes, min(p-1, N/p))), p=Primes)]:
    B:= select(t -> isprime((t[1]+t[2])/2), SP):
    sort(map(t -> t[1]*t[2], B)); # Robert Israel, Dec 14 2019
  • Mathematica
    Select[Select[Range@ 1330, SquareFreeQ@ # && PrimeOmega@ # == 2 &], PrimeQ@ Mean[First /@ FactorInteger@ #] &] (* Michael De Vlieger, Mar 30 2016 *)
  • PARI
    sopf(n)= { local(f, s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) }
    {for (n=6, 2*10^3,  if(bigomega(n)==2&&omega(n)==2, m=sopf(n)/2;if(m==truncate(m),if(isprime(m), print1(n, ", ")))))}

A283929 Number of ways of writing n as a sum of a twin prime (A001097) and a squarefree semiprime (A006881).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 1, 2, 1, 2, 1, 2, 1, 3, 2, 3, 2, 3, 0, 2, 2, 3, 2, 2, 1, 3, 3, 4, 3, 4, 2, 3, 3, 4, 4, 2, 1, 3, 3, 5, 4, 4, 2, 3, 3, 4, 4, 1, 2, 1, 5, 4, 5, 6, 2, 4, 5, 5, 4, 2, 3, 2, 5, 5, 6, 5, 2, 4, 5, 5, 6, 2, 3, 4, 4, 6, 5, 4, 3, 3, 5, 6, 8, 3, 7, 4, 9, 6, 6, 3, 3, 3, 5, 6, 7, 4, 5, 3, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 18 2017

Keywords

Comments

Conjecture: a(n) > 0 for all n > 30.

Examples

			a(17) = 3 because we have [14, 3], [11, 6] and [10, 7].
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(0) to a(N)
    V:= Vector(N):
    Primes:= select(isprime,[2,seq(i,i=3..N+2)]):
    PS:= convert(Primes,set);
    Twins:= PS intersect map(`-`,PS,2):
    Twins:= Twins union map(`+`,Twins,2):
    Twins:= sort(convert(Twins,list)):
    for i from 1 to nops(Twins) do
      for j from 1 to nops(Primes) while Twins[i]+2*Primes[j] <= N do
        for k from 1 to j-1 do
          v:= Twins[i]+Primes[k]*Primes[j];
          if v > N then break fi;
          V[v]:= V[v]+1;
    od od od:
    0, seq(V[i],i=1..N); # Robert Israel, Mar 29 2017
  • Mathematica
    nmax = 110; CoefficientList[Series[Sum[Boole[PrimeQ[k] && (PrimeQ[k - 2] || PrimeQ[k + 2])] x^k, {k, 1, nmax}] Sum[MoebiusMu[k]^2 Floor[2/PrimeOmega[k]] Floor[PrimeOmega[k]/2] x^k, {k, 2, nmax}], {x, 0, nmax}], x]
  • PARI
    concat([0, 0, 0, 0, 0, 0, 0, 0, 0], Vec(sum(k=1, 110, (isprime(k) && (isprime(k - 2) || isprime(k + 2)))* x^k) * sum(k=2, 110, moebius(k)^2 * floor(2/bigomega(k)) * floor(bigomega(k)/2) * x^k) + O(x^111))) \\ Indranil Ghosh, Mar 18 2017

Formula

G.f.: (Sum_{k>=1} x^A001097(k))*(Sum_{k>=1} x^A006881(k)).

A342092 Odd numbers k such that if k = A001065(m) for some m then m is a squarefree semiprime (A006881).

Original entry on oeis.org

5, 9, 11, 17, 19, 23, 25, 27, 29, 35, 37, 39, 45, 47, 51, 53, 59, 61, 67, 69, 71, 75, 77, 79, 83, 85, 91, 93, 95, 99, 101, 103, 107, 111, 113, 115, 119, 125, 135, 139, 143, 147, 149, 151, 155, 159, 163, 165, 167, 171, 173, 179, 181, 187, 189, 197, 199, 207, 213
Offset: 1

Views

Author

Amiram Eldar, Feb 27 2021

Keywords

Comments

Assuming that every even number above 6 is the sum of 2 distinct prime numbers, p + q (a slightly stronger version of the Goldbach conjecture), then every odd number m above 7 is of the form 1 + p + q, so A001065(p*q) = m. If this is true, then 5 is the only odd untouchable number (A005114).
Alanen (1972) suggested the study of odd numbers that are being "touched" only by Goldbach solutions, i.e., odd numbers k such that there is no solution m to A001065(m) = k which is not a squarefree semiprime. He suggested that perhaps these numbers deserved to be called "almost untouchable" numbers.

Examples

			9 is a term since the only solution to A001065(m) = 9 is m = 3 * 5 = 15.
13 is not a term since there are 2 solutions to A001065(m) = 9, m = 27 = 3^3 and m = 35 = 5*7, and the first solution is not a semiprime.
		

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{v = Table[0, {max}]}, Do[If[! (PrimeOmega[n] == PrimeNu[n] == 2), k = DivisorSigma[1, n] - n; If[OddQ[k] && 2 <= k <= max, v[[k]]++]], {n, 1, max^2}]; Select[Rest[Position[v, _?(# == 0 &)] // Flatten], OddQ]]; seq[300]

A058894 Squarefree semiprimes A006881(m) such that |A006881(m)-A007304(m)| = 1.

Original entry on oeis.org

1280073, 1280438, 1280441, 1281166, 1281191, 1281242
Offset: 1

Views

Author

Naohiro Nomoto, Jan 08 2001

Keywords

Comments

From Amiram Eldar, Jun 20 2025: (Start)
The corresponding values of m are 265608, 265682, 265683, 265832, 265837 and 265849, and the corresponding values of A007304(m) are 1280074, 1280437, 1280442, 1281165, 1281190 and 1281241.
a(7) > 10^8, if it exists. (End)

Crossrefs

Extensions

Offset corrected by Amiram Eldar, Jun 20 2025
Previous Showing 11-20 of 485 results. Next