cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 269 results. Next

A263529 Binomial transform of double factorial n!! (A006882).

Original entry on oeis.org

1, 2, 5, 13, 37, 111, 355, 1191, 4201, 15445, 59171, 234983, 966397, 4101709, 17946783, 80754331, 373286481, 1769440513, 8592681907, 42689422871, 216789872741, 1124107246669, 5947013363479, 32071798826115, 176194545585529, 985330955637801, 5605802379087067
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 19 2015

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 13*x^3 + 37*x^4 + 111*x^5 + 355*x^6 + 1191*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k!!*Binomial[n, k], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 20 2015 *)
  • PARI
    vector(50, n, n--; sum(k=0, n, prod(i=0, (k-1)\2, k - 2*i)*binomial(n,k))) \\ Altug Alkan, Oct 20 2015

Formula

a(n) = Sum_{k=0..n} k!!*binomial(n,k), where k!! = A006882(k).
Sum_{k=0..n} (-1)^(k+n)*a(k)*binomial(n,k) = n!!.
E.g.f.: exp(x) + exp((2*x+x^2)/2)*(2 + sqrt(2*Pi)*erf(x/sqrt(2)))*x/2.
Recurrence: (n+1)*a(n+2) = (n+2)*a(n+1) + (n+1)*(n+2)*a(n) - 1.
a(n) ~ (sqrt(2) + sqrt(Pi))/2 * n^(n/2 + 1/2) * exp(sqrt(n) - n/2 - 1/4). - Vaclav Kotesovec, Oct 20 2015
0 = a(n)*(+a(n+1) - 2*a(n+2) - 2*a(n+3) + a(n+4)) + a(n+1)*(+3*a(n+2) + a(n+3) - a(n+4)) + a(n+2)*(-2*a(n+2) + a(n+3)) for all n>=0. - Michael Somos, Oct 20 2015
G.f.: Sum_{k>=0} k!!*x^k/(1 - x)^(k+1). - Ilya Gutkovskiy, Apr 12 2019

A095175 Denominator of b(n) given by b(1) = 1, b(2) = 2; for n >= 3, b(n) = (-1)^n (2n-1) ((n-2)!!)^2/((n-1)!!)^2, where n!! is the double factorial A006882.

Original entry on oeis.org

1, 1, 4, 9, 64, 225, 256, 245, 16384, 99225, 65536, 480249, 1048576, 1002001, 4194304, 41409225, 1073741824, 2393453205, 4294967296, 4102737925, 68719476736, 940839860961, 274877906944, 4113258565689, 17592186044416, 16802526820625, 70368744177664
Offset: 1

Views

Author

N. J. A. Sloane, based on a suggestion of Leroy Quet, Jul 03 2004

Keywords

Comments

A095159(2n)/a(2n) -> pi as n -> inf.; A095159(2n+1)/a(2n+1) -> -4/pi as n -> inf. - Leroy Quet, Aug 03 2004

Crossrefs

A114338 Number of divisors of n!! (double factorial = A006882(n)).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 10, 8, 16, 16, 36, 32, 66, 64, 144, 120, 192, 240, 340, 480, 570, 864, 1200, 1728, 1656, 2880, 3456, 4320, 5616, 8640, 9072, 17280, 10752, 28800, 22176, 46080, 30240, 92160, 62208, 152064, 84240, 304128, 128000, 608256, 201600
Offset: 0

Views

Author

Giovanni Resta, Feb 07 2006

Keywords

Comments

It appears that a(n+2) = 2*a(n) if n is in A238526. - Michel Lagneau, Dec 07 2015

Examples

			a(5) = 4 since 5!! = 15 and the divisors are 1, 3, 5 and 15.
a(6) = 10 because 6!! = A006882(6) = 48 has precisely ten distinct divisors: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48. - _Michel Lagneau_, Dec 07 2016
		

Crossrefs

Programs

  • Maple
    f := proc(n)
    numtheory[tau](doublefactorial(n)) ;
    end proc: # R. J. Mathar, Dec 14 2015
  • Mathematica
    DivisorSigma[0,Range[50]!! ]
  • PARI
    df(n) = if( n<0, 0, my(E); E = exp(x^2 / 2 + x * O(x^n)); n! * polcoeff( 1 + E * x * (1 + intformal(1 / E)), n)); \\ A006882
    vector(100, n, n--; numdiv(df(n))) \\ Altug Alkan, Dec 07 2015

Formula

a(n) = sigma_0(n!!) = tau(n!!) = A000005(A006882(n)).

A115648 Square numbers which are the sum of distinct double factorials (A006882).

Original entry on oeis.org

1, 4, 9, 16, 25, 49, 64, 121, 169, 400, 441, 961, 1444, 3844, 3969, 4225, 4356, 4900, 5184, 10404, 11449, 11881, 14400, 15625, 47089, 47524, 56644, 57600, 139129, 145924, 149769, 182329, 192721, 695556, 705600, 792100, 837225, 2073600
Offset: 1

Views

Author

Giovanni Resta, Jan 28 2006

Keywords

Comments

Double factorials 0!! and 1!! are not considered distinct. Note that double factorial (n!!) is different from (n!)!.

Examples

			10404 = 102^2 = 1!! + 4!! + 11!!.
		

Crossrefs

A115649 Numbers whose square is the sum of distinct double factorials (A006882).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 11, 13, 20, 21, 31, 38, 62, 63, 65, 66, 70, 72, 102, 107, 109, 120, 125, 217, 218, 238, 240, 373, 382, 387, 427, 439, 834, 840, 890, 915, 1440, 1474, 1638, 1650, 3213, 3220, 3241, 3332, 3540, 5886, 6751, 6855, 13730, 14078, 14911
Offset: 1

Views

Author

Giovanni Resta, Jan 28 2006

Keywords

Comments

Double factorials 0!! and 1!! are not considered distinct. Note that double factorial (n!!) is different from (n!)!.

Examples

			102^2 = 1!! + 4!! + 11!!.
		

Crossrefs

A115650 Triangular numbers which are the sum of distinct double factorials (A006882).

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 28, 66, 105, 120, 153, 171, 435, 561, 946, 1378, 1485, 3916, 4005, 4278, 4851, 4950, 11781, 14365, 15576, 47586, 50086, 51360, 57970, 60378, 60726, 61425, 61776, 139128, 145530, 146070, 149878, 150426, 182710, 659526, 702705
Offset: 1

Views

Author

Giovanni Resta, Jan 28 2006

Keywords

Comments

Double factorials 0!! and 1!! are not considered distinct. Note that double factorial (n!!) is different from (n!)!.

Examples

			T(527) = 19128 = 13!! + 10!! + 7!! + 6!!.
		

Crossrefs

A202212 Triangle read by rows: T(n,k) (1 <= k <= n-1, n >= 2) = d(2*(n-k)-1)*(d(2*n-2)/d(2*(n-k)-2) - d(2*n-3)/d(2*(n-k)-3)), where d = A006882 is the double factorial function.

Original entry on oeis.org

1, 3, 5, 15, 27, 33, 105, 195, 261, 279, 945, 1785, 2475, 2925, 2895, 10395, 19845, 28035, 34425, 37935, 35685, 135135, 259875, 371385, 465255, 533925, 562275, 509985, 2027025, 3918915, 5644485, 7158375, 8390025, 9218475, 9401805, 8294895, 34459425, 66891825, 96891795, 123898005, 147093975, 165209625, 176067675, 175313565, 151335135, 654729075, 1274998725, 1854727875, 2385808425, 2857013775, 3252014325, 3545408475, 3693650625, 3609649575, 3061162125
Offset: 2

Views

Author

N. J. A. Sloane, Dec 14 2011

Keywords

Examples

			Triangle begins
1,
3, 5,
15, 27, 33,
105, 195, 261, 279,
945, 1785, 2475, 2925, 2895,
10395, 19845, 28035, 34425, 37935, 35685,
135135, 259875, 371385, 465255, 533925, 562275, 509985,
...
		

Crossrefs

Edges of triangle are A006882 and A129890.

Programs

  • Maple
    d:=doublefactorial;
    a:=(n,k)-> d(2*(n-k)-1)*(d(2*n-2)/d(2*(n-k)-2) - d(2*n-3)/d(2*(n-k)-3));
    f:=n->[seq(a(n,k),k=1..n-1)];
    for n from 1 to 10 do lprint(f(n)); od:
  • Mathematica
    a[n_, k_] := (2*(n-k)-1)!!*((2*n-2)!!/(2*(n-k)-2)!!-(2*n-3)!!/(2*(n-k)-3)!!); Table[a[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)

A232788 A232773(n) / A006882(n): Permanent of the n X n matrix with elements [1,2,...,n^2], divided by n!!.

Original entry on oeis.org

1, 1, 5, 150, 6932, 965380, 143299890, 51176650000, 16737737386944, 11806879466638656, 7023172771916784000, 8447153882019234307200, 8134080139379917205277696, 15176253254155788712392633600, 21875035292051870323313614135440, 59270306784445546617788929301760000
Offset: 0

Views

Author

M. F. Hasler, Nov 30 2013

Keywords

Comments

Limit n->infinity a(n)^(1/n)/n^(5/2) = exp(-3/2). - Vaclav Kotesovec, Nov 08 2014

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= n-> (-1)^n *add(n^k *stirling1(n, n-k)*stirling1(n+1, k+1)
            *(n-k)!* k!, k=0..n)/doublefactorial(n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Dec 02 2013
  • Mathematica
    Flatten[{1,Table[(-1)^n*Sum[n^k*StirlingS1[n,n-k]*StirlingS1[n+1,k+1]*(n-k)!*k!,{k,0,n}]/n!!,{n,1,20}]}] (* Vaclav Kotesovec, Nov 08 2014 *)
  • PARI
    n->(-1)^n*sum(k=0,n,n^k*stirling(n,n-k)*stirling(n+1,k+1)*(n-k)!*k!)/A006882(n)

Extensions

a(0)=1 inserted by Alois P. Heinz, Dec 02 2013

A262020 Inverse binomial transform of double factorial n!! = A006882(n).

Original entry on oeis.org

1, 0, 1, -1, 5, -11, 43, -127, 489, -1693, 6771, -26071, 109693, -457757, 2028671, -9039931, 42101329, -198411489, 967906675, -4791497559, 24401815141, -126243354637, 669094876055, -3603105436163, 19818039219577, -110721426757801, 630419303537115
Offset: 0

Views

Author

Alois P. Heinz, Oct 22 2015

Keywords

Crossrefs

Cf. A000166 (the same for n!), A006882, A263529.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, (n-1)^2,
           (n-2)*a(n-3) +(n-1)*a(n-2) -2*a(n-1))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    Table[Sum[(-1)^(n-k) * Binomial[n, k] * k!!, {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 31 2017 *)

Formula

E.g.f.: (2*exp(x^2/2)*x+2+sqrt(2*Pi)*exp(x^2/2)*erf(x/sqrt(2))*x) / (2*exp(x)).
a(n) = (n-2)*a(n-3)+(n-1)*a(n-2)-2*a(n-1) for n>2, a(n) = (n-1)^2 otherwise.
a(n) = Sum_{k=0..n} (-1)^k * C(n,k) * A006882(n-k).
a(n) ~ (-1)^n * (sqrt(Pi) - sqrt(2)) * exp(sqrt(n) - n/2 - 1/4) * n^((n+1)/2) / 2. - Vaclav Kotesovec, Oct 31 2017
G.f.: Sum_{k>=0} k!!*x^k/(1 + x)^(k+1). - Ilya Gutkovskiy, Apr 12 2019

A306184 a(n) = (2n+1)!! mod (2n)!! where k!! = A006882(k).

Original entry on oeis.org

1, 7, 9, 177, 2715, 42975, 91665, 3493665, 97345395, 2601636975, 70985324025, 57891366225, 9411029102475, 476966861546175, 20499289200014625, 847876038362978625, 35160445175104123875, 1487419121780448231375, 945654757149212735625, 357657177058846280240625
Offset: 1

Views

Author

Alex Ratushnyak, Jan 27 2019

Keywords

Comments

a(n) is divisible by A049606(n). - Robert Israel, Jan 28 2019

Examples

			a(3) = A006882(7) mod A006882(6) = (7*5*3) mod (6*4*2) = 105 mod 48 = 9.
		

Crossrefs

Programs

  • Maple
    f:= n -> doublefactorial(2*n+1) mod doublefactorial(2*n):
    map(f, [$1..40]); # Robert Israel, Jan 28 2019
  • Mathematica
    Mod[#[[2]],#[[1]]]&/@Partition[Range[2,42]!!,2] (* Harvey P. Dale, May 29 2025 *)
  • Python
    o=e=1
    for n in range(2, 99, 2):
      o*=n+1
      e*=n
      print(o%e, end=', ')

Formula

a(n) = A006882(2*n+1) mod A006882(2*n).
Previous Showing 11-20 of 269 results. Next