A263529
Binomial transform of double factorial n!! (A006882).
Original entry on oeis.org
1, 2, 5, 13, 37, 111, 355, 1191, 4201, 15445, 59171, 234983, 966397, 4101709, 17946783, 80754331, 373286481, 1769440513, 8592681907, 42689422871, 216789872741, 1124107246669, 5947013363479, 32071798826115, 176194545585529, 985330955637801, 5605802379087067
Offset: 0
G.f. = 1 + 2*x + 5*x^2 + 13*x^3 + 37*x^4 + 111*x^5 + 355*x^6 + 1191*x^7 + ...
-
Table[Sum[k!!*Binomial[n, k], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 20 2015 *)
-
vector(50, n, n--; sum(k=0, n, prod(i=0, (k-1)\2, k - 2*i)*binomial(n,k))) \\ Altug Alkan, Oct 20 2015
A095175
Denominator of b(n) given by b(1) = 1, b(2) = 2; for n >= 3, b(n) = (-1)^n (2n-1) ((n-2)!!)^2/((n-1)!!)^2, where n!! is the double factorial A006882.
Original entry on oeis.org
1, 1, 4, 9, 64, 225, 256, 245, 16384, 99225, 65536, 480249, 1048576, 1002001, 4194304, 41409225, 1073741824, 2393453205, 4294967296, 4102737925, 68719476736, 940839860961, 274877906944, 4113258565689, 17592186044416, 16802526820625, 70368744177664
Offset: 1
A114338
Number of divisors of n!! (double factorial = A006882(n)).
Original entry on oeis.org
1, 1, 2, 2, 4, 4, 10, 8, 16, 16, 36, 32, 66, 64, 144, 120, 192, 240, 340, 480, 570, 864, 1200, 1728, 1656, 2880, 3456, 4320, 5616, 8640, 9072, 17280, 10752, 28800, 22176, 46080, 30240, 92160, 62208, 152064, 84240, 304128, 128000, 608256, 201600
Offset: 0
a(5) = 4 since 5!! = 15 and the divisors are 1, 3, 5 and 15.
a(6) = 10 because 6!! = A006882(6) = 48 has precisely ten distinct divisors: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48. - _Michel Lagneau_, Dec 07 2016
-
f := proc(n)
numtheory[tau](doublefactorial(n)) ;
end proc: # R. J. Mathar, Dec 14 2015
-
DivisorSigma[0,Range[50]!! ]
-
df(n) = if( n<0, 0, my(E); E = exp(x^2 / 2 + x * O(x^n)); n! * polcoeff( 1 + E * x * (1 + intformal(1 / E)), n)); \\ A006882
vector(100, n, n--; numdiv(df(n))) \\ Altug Alkan, Dec 07 2015
A115648
Square numbers which are the sum of distinct double factorials (A006882).
Original entry on oeis.org
1, 4, 9, 16, 25, 49, 64, 121, 169, 400, 441, 961, 1444, 3844, 3969, 4225, 4356, 4900, 5184, 10404, 11449, 11881, 14400, 15625, 47089, 47524, 56644, 57600, 139129, 145924, 149769, 182329, 192721, 695556, 705600, 792100, 837225, 2073600
Offset: 1
10404 = 102^2 = 1!! + 4!! + 11!!.
A115649
Numbers whose square is the sum of distinct double factorials (A006882).
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 11, 13, 20, 21, 31, 38, 62, 63, 65, 66, 70, 72, 102, 107, 109, 120, 125, 217, 218, 238, 240, 373, 382, 387, 427, 439, 834, 840, 890, 915, 1440, 1474, 1638, 1650, 3213, 3220, 3241, 3332, 3540, 5886, 6751, 6855, 13730, 14078, 14911
Offset: 1
102^2 = 1!! + 4!! + 11!!.
A115650
Triangular numbers which are the sum of distinct double factorials (A006882).
Original entry on oeis.org
1, 3, 6, 10, 15, 21, 28, 66, 105, 120, 153, 171, 435, 561, 946, 1378, 1485, 3916, 4005, 4278, 4851, 4950, 11781, 14365, 15576, 47586, 50086, 51360, 57970, 60378, 60726, 61425, 61776, 139128, 145530, 146070, 149878, 150426, 182710, 659526, 702705
Offset: 1
T(527) = 19128 = 13!! + 10!! + 7!! + 6!!.
A202212
Triangle read by rows: T(n,k) (1 <= k <= n-1, n >= 2) = d(2*(n-k)-1)*(d(2*n-2)/d(2*(n-k)-2) - d(2*n-3)/d(2*(n-k)-3)), where d = A006882 is the double factorial function.
Original entry on oeis.org
1, 3, 5, 15, 27, 33, 105, 195, 261, 279, 945, 1785, 2475, 2925, 2895, 10395, 19845, 28035, 34425, 37935, 35685, 135135, 259875, 371385, 465255, 533925, 562275, 509985, 2027025, 3918915, 5644485, 7158375, 8390025, 9218475, 9401805, 8294895, 34459425, 66891825, 96891795, 123898005, 147093975, 165209625, 176067675, 175313565, 151335135, 654729075, 1274998725, 1854727875, 2385808425, 2857013775, 3252014325, 3545408475, 3693650625, 3609649575, 3061162125
Offset: 2
Triangle begins
1,
3, 5,
15, 27, 33,
105, 195, 261, 279,
945, 1785, 2475, 2925, 2895,
10395, 19845, 28035, 34425, 37935, 35685,
135135, 259875, 371385, 465255, 533925, 562275, 509985,
...
-
d:=doublefactorial;
a:=(n,k)-> d(2*(n-k)-1)*(d(2*n-2)/d(2*(n-k)-2) - d(2*n-3)/d(2*(n-k)-3));
f:=n->[seq(a(n,k),k=1..n-1)];
for n from 1 to 10 do lprint(f(n)); od:
-
a[n_, k_] := (2*(n-k)-1)!!*((2*n-2)!!/(2*(n-k)-2)!!-(2*n-3)!!/(2*(n-k)-3)!!); Table[a[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)
A232788
A232773(n) / A006882(n): Permanent of the n X n matrix with elements [1,2,...,n^2], divided by n!!.
Original entry on oeis.org
1, 1, 5, 150, 6932, 965380, 143299890, 51176650000, 16737737386944, 11806879466638656, 7023172771916784000, 8447153882019234307200, 8134080139379917205277696, 15176253254155788712392633600, 21875035292051870323313614135440, 59270306784445546617788929301760000
Offset: 0
-
with(combinat):
a:= n-> (-1)^n *add(n^k *stirling1(n, n-k)*stirling1(n+1, k+1)
*(n-k)!* k!, k=0..n)/doublefactorial(n):
seq(a(n), n=0..20); # Alois P. Heinz, Dec 02 2013
-
Flatten[{1,Table[(-1)^n*Sum[n^k*StirlingS1[n,n-k]*StirlingS1[n+1,k+1]*(n-k)!*k!,{k,0,n}]/n!!,{n,1,20}]}] (* Vaclav Kotesovec, Nov 08 2014 *)
-
n->(-1)^n*sum(k=0,n,n^k*stirling(n,n-k)*stirling(n+1,k+1)*(n-k)!*k!)/A006882(n)
A262020
Inverse binomial transform of double factorial n!! = A006882(n).
Original entry on oeis.org
1, 0, 1, -1, 5, -11, 43, -127, 489, -1693, 6771, -26071, 109693, -457757, 2028671, -9039931, 42101329, -198411489, 967906675, -4791497559, 24401815141, -126243354637, 669094876055, -3603105436163, 19818039219577, -110721426757801, 630419303537115
Offset: 0
-
a:= proc(n) option remember; `if`(n<3, (n-1)^2,
(n-2)*a(n-3) +(n-1)*a(n-2) -2*a(n-1))
end:
seq(a(n), n=0..30);
-
Table[Sum[(-1)^(n-k) * Binomial[n, k] * k!!, {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 31 2017 *)
A306184
a(n) = (2n+1)!! mod (2n)!! where k!! = A006882(k).
Original entry on oeis.org
1, 7, 9, 177, 2715, 42975, 91665, 3493665, 97345395, 2601636975, 70985324025, 57891366225, 9411029102475, 476966861546175, 20499289200014625, 847876038362978625, 35160445175104123875, 1487419121780448231375, 945654757149212735625, 357657177058846280240625
Offset: 1
a(3) = A006882(7) mod A006882(6) = (7*5*3) mod (6*4*2) = 105 mod 48 = 9.
-
f:= n -> doublefactorial(2*n+1) mod doublefactorial(2*n):
map(f, [$1..40]); # Robert Israel, Jan 28 2019
-
Mod[#[[2]],#[[1]]]&/@Partition[Range[2,42]!!,2] (* Harvey P. Dale, May 29 2025 *)
-
o=e=1
for n in range(2, 99, 2):
o*=n+1
e*=n
print(o%e, end=', ')
Comments