cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 78 results. Next

A266942 Expansion of Product_{k>=1} ((1 + k*x^k) / (1 - k*x^k))^k.

Original entry on oeis.org

1, 2, 10, 36, 118, 376, 1156, 3392, 9734, 27230, 74256, 198724, 522292, 1348968, 3432824, 8613856, 21330374, 52190692, 126262774, 302222388, 716247128, 1681575344, 3912919956, 9028823856, 20667406276, 46949343786, 105881451120, 237135574392, 527580701456
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 06 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+k*x^k)/(1-k*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

From Vaclav Kotesovec, Jan 08 2016: (Start)
a(n) ~ c * n^2 * 3^(n/3), where
c = 1122422673446372185062691708933615715850.583956830118389527... if mod(n,3)=0
c = 1122422673446372185062691708933615715849.484130848291097773... if mod(n,3)=1
c = 1122422673446372185062691708933615715849.782119252925454917... if mod(n,3)=2
(End)

A302830 Expansion of (1/(1 - x))*Product_{k>=1} 1/(1 - k*x^k).

Original entry on oeis.org

1, 2, 5, 11, 25, 50, 106, 203, 401, 755, 1427, 2597, 4804, 8566, 15352, 27027, 47551, 82187, 142445, 243025, 414919, 700739, 1181236, 1972552, 3293898, 5450728, 9008081, 14791741, 24244399, 39494615, 64266141, 103979929, 167991853, 270190879, 433773933, 693518984
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 13 2018

Keywords

Comments

Partial sums of A006906.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+add(b(n-i*j, i-1)*(i^j), j=1..n/i)))
        end:
    a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+b(n$2)) end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 13 2018
  • Mathematica
    nmax = 35; CoefficientList[Series[1/(1 - x) Product[1/(1 - k x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 35; CoefficientList[Series[1/(1 - x) Exp[Sum[Sum[k^j x^(j k)/j, {k, 1, nmax}], {j, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: (1/(1 - x))*exp(Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j).
From Vaclav Kotesovec, Apr 14 2018: (Start)
a(n) ~ c * 3^(n/3), where
c = 319343.48587983201292657132469068725642363369445... if mod(n,3)=0
c = 319343.34569378454521307030620964478962032866022... if mod(n,3)=1
c = 319343.21458897980925594955657564398036486423380... if mod(n,3)=2
(End)

A303175 a(n) = [x^n] Product_{k=1..n} 1/(1 - (n - k + 1)*x^k).

Original entry on oeis.org

1, 1, 5, 34, 322, 3803, 55297, 953815, 19086057, 434477488, 11086102633, 313318606066, 9714265351819, 327788649292844, 11957321196905337, 468872400449456885, 19666225828334583690, 878560858388253803180, 41645712575272737701666, 2087686693048676581394052
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Examples

			a(0) = 1;
a(1) = [x^1] 1/(1 - x) = 1;
a(2) = [x^2] 1/((1 - 2*x)*(1 - x^2)) = 5;
a(3) = [x^3] 1/((1 - 3*x)*(1 - 2*x^2)*(1 - x^3)) = 34;
a(4) = [x^4] 1/((1 - 4*x)*(1 - 3*x^2)*(1 - 2*x^3)*(1 - x^4)) = 322;
a(5) = [x^5] 1/((1 - 5*x)*(1 - 4*x^2)*(1 - 3*x^3)*(1 - 2*x^4)*(1 - x^5)) = 3803, etc.
...
The table of coefficients of x^k in expansion of Product_{k=1..n} 1/(1 - (n - k + 1)*x^k) begins:
n = 0: (1), 0,   0,    0,    0,     0,  ...
n = 1:  1, (1),  1,    1,    1,     1,  ...
n = 2:  1,  2,  (5),  10,   21,    42,  ...
n = 3:  1,  3,  11,  (34), 106,   320,  ...
n = 4:  1,  4,  19,   78, (322), 1294,  ...
n = 5:  1,  5,  29,  148,  758, (3803), ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - (n - k + 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ n^n * (1 + 1/n + 1/n^2 - 1/n^3 - 3/n^4 - 8/n^5 - 7/n^6 - 13/n^7 + 2/n^8 - 3/n^9 + 31/n^10 + 21/n^11 + 81/n^12 + 2/n^13 + 152/n^14 - 114/n^15 + 173/n^16 - 341/n^17 + 260/n^18 - 936/n^19 + 861/n^20 - 2187/n^21 + 2630/n^22 - 4551/n^23 + 6211/n^24 - 8866/n^25 + 14889/n^26 - 22374/n^27 + 38490/n^28 - 55911/n^29 + 87688/n^30 - ...). - Vaclav Kotesovec, Aug 21 2018

A353993 Expansion of e.g.f. ( Product_{k>0} 1/(1 - k * x^k) )^(1/(1-x)).

Original entry on oeis.org

1, 1, 8, 63, 668, 7850, 115914, 1847286, 34031024, 682177464, 15049816200, 357564279600, 9212847784392, 252552128708568, 7395084613746816, 229412209982127480, 7524339637608261120, 259675490280634374720, 9418707076419411194304, 357606237255136232451264
Offset: 0

Views

Author

Seiichi Manyama, Aug 06 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, 1-k*x^k)^(1/(1-x))))
    
  • PARI
    a353992(n) = n!*sum(k=1, n, sumdiv(k, d, (k/d)^d/d));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a353992(j)*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A353992(k) * binomial(n-1,k-1) * a(n-k).

A022726 Expansion of 1/Product_{m>=1} (1 - m*q^m)^2.

Original entry on oeis.org

1, 2, 7, 18, 49, 114, 282, 624, 1422, 3058, 6597, 13700, 28564, 57698, 116479, 230398, 453698, 879080, 1696732, 3230578, 6124326, 11486884, 21439480, 39659598, 73036175, 133445640, 242756058, 438680734, 789328034, 1411926186, 2515574329, 4458203590, 7871211452, 13831782146
Offset: 0

Views

Author

Keywords

Comments

Self-convolution of A006906. - Vaclav Kotesovec, Jan 06 2016

Crossrefs

Column k=2 of A297328.

Programs

  • Magma
    n:=40; R:=PowerSeriesRing(Integers(), n); Coefficients(R!(&*[(1/(1-m*x^m))^2:m in [1..n]])); // G. C. Greubel, Jul 25 2018
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 06 2016 *)
  • PARI
    N=66; q='q+O('q^N);
    gf= 1/prod(n=1,N, (1-n*q^n)^2 );
    Vec(gf)
    /* Joerg Arndt, Oct 06 2012 */
    

Formula

From Vaclav Kotesovec, Jan 07 2016: (Start)
a(n) ~ c * n * 3^(n/3), where
c = 9588921272.54120308291761424720457... = (c0^2 + 2*c1*c2)/3 if mod(n,3)=0
c = 9588921272.50566179874517327053929... = (c2^2 + 2*c0*c1)/3 if mod(n,3)=1
c = 9588921272.49785814355801212400055... = (c1^2 + 2*c0*c2)/3 if mod(n,3)=2
For the constants c0, c1, c2 see A006906.
(End)
G.f.: exp(2*Sum_{j>=1} Sum_{k>=1} k^j*x^(j*k)/j). - Ilya Gutkovskiy, Feb 07 2018

Extensions

Added more terms, Joerg Arndt, Oct 06 2012

A085643 Refines sequence A078812 using permutations and products of exponents on least prime signatures.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 6, 4, 6, 1, 5, 8, 12, 9, 12, 8, 1, 6, 10, 16, 9, 12, 36, 8, 12, 24, 10, 1, 7, 12, 20, 24, 15, 48, 36, 27, 16, 72, 32, 15, 40, 12, 1, 8, 14, 24, 30, 16, 18, 60, 48, 72, 54, 20, 96, 144, 54, 16, 20, 120, 80, 18, 60, 14, 1
Offset: 1

Views

Author

Alford Arnold, Aug 15 2003

Keywords

Comments

The shape sequence for this table is A000041. Row sums in the example are A000079, A006906 and A001906.

Examples

			When the signatures (A025487) are listed in A036035 order the number of permutations of the exponents begin
1, 1 1, 1 2 1, 1 2 1 3 1, 1 2 2 3 3 4 1, ... b(n) and the products begin
1, 2 1, 3 2 1, 4 3 4 2 1, 5 4 6 3 4 2 1, ... c(n) thus we can write
1, 2 1, 3 4 1, 4 6 4 6 1, 5 8 12 9 12 8 1, ... a(n) = b(n)*c(n)
		

Crossrefs

Cf. A078812.

A265955 Expansion of Product_{k>=1} (1 + 2*k*x^k)/(1 - 2*k*x^k).

Original entry on oeis.org

1, 4, 16, 60, 192, 596, 1776, 5020, 13760, 36916, 96336, 246316, 619392, 1530548, 3729392, 8976364, 21337920, 50195268, 116977232, 270114764, 618712640, 1406843940, 3176387120, 7126185948, 15894370816, 35253947940, 77796242768, 170868178332, 373606888128
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+2*k*x^k)/(1-2*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * n * 2^n, where c = 2 * Product_{m>=3} (1 + 2/(2^(m-1)/m - 1)) = 193.4198278838721371054040810054045645734538119720773785523616944906739...

A301577 G.f. A(x) satisfies: A(x) = Product_{k>=1} 1/(1 - k*x^k*A(x)^k).

Original entry on oeis.org

1, 1, 4, 16, 75, 366, 1887, 10010, 54493, 302302, 1703599, 9723774, 56101292, 326640411, 1916800425, 11325242328, 67316128903, 402245682741, 2414978550718, 14560379165160, 88122911824659, 535188028077586, 3260549998701951, 19921639754064470, 122041156818328779
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 23 2018

Keywords

Examples

			G.f. A(x) = 1 + x + 4*x^2 + 16*x^3 + 75*x^4 + 366*x^5 + 1887*x^6 + 10010*x^7 + 54493*x^8 + 302302*x^9 + ...
G.f. A(x) satisfies: A(x) = 1/((1 - x*A(x)) * (1 - 2*x^2*A(x)^2) * (1 - 3*x^3*A(x)^3) * ...).
log(A(x)) = x + 7*x^2/2 + 37*x^3/3 + 219*x^4/4 + 1276*x^5/5 + 7687*x^6/6 + 46551*x^7/7 + 285043*x^8/8 + ... + A297329(n)*x^n/n + ...
		

Crossrefs

A326885 E.g.f.: Product_{k>=1} 1/(1 - k*(exp(x)-1)^k).

Original entry on oeis.org

1, 1, 7, 55, 595, 7351, 110587, 1884415, 36154195, 771983911, 18141124267, 463345240975, 12792709110595, 379854657215671, 12057296962232347, 407072488594360735, 14565548824196479795, 550582832110097346631, 21917855760706255154827, 916261422041320023467695
Offset: 0

Views

Author

Vaclav Kotesovec, Jul 31 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1-k*(Exp[x]-1)^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) = Sum_{k=0..n} A006906(k)*Stirling2(n,k)*k!.
a(n) ~ c * n! / ((3^(2/3) - 2) * (3^(2/3) - 1) * log(1 + 3^(-1/3))^(n+1)), where c = Product_{k>=4} 1/(1 - k/3^(k/3)) = 3468.14377687388560106742710672518465524...

A022739 Expansion of Product (1-m*q^m)^-15; m=1..infinity.

Original entry on oeis.org

1, 15, 150, 1175, 7875, 46953, 255745, 1293825, 6154530, 27772930, 119720802, 495673410, 1979777985, 7656005115, 28752006375, 105129718102, 375082371420, 1308260532180, 4468338006465
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=15 of A297328.

Programs

  • Maple
    N:= 30: # for a(0)..a(N)
    P:= mul(1-m*q^m,m=1..N):
    S:= series(P,q,N+1):
    S15:= series(S^(-15),q,N+1):
    seq(coeff(S15,q,i),i=0..N); # Robert Israel, Dec 22 2019
  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1 - k*x^k)^15, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 23 2019 *)
Previous Showing 41-50 of 78 results. Next