A262384
Numerators of a semi-convergent series leading to the second Stieltjes constant gamma_2.
Original entry on oeis.org
0, -1, 5, -469, 6515, -131672123, 63427, -47800416479, 15112153995391, -29632323552377537, 4843119962464267, -1882558877249847563479, 2432942522372150087, -2768809380553055597986831, 334463513629004852735064113, -1125061940756859461946444233539, 333807583501528759350875247323
Offset: 1
Numerators of 0/1, -1/60, 5/336, -469/21600, 6515/133056, -131672123/825552000, ...
The sequence of denominators is
A262385.
Cf.
A001067,
A001620,
A002206,
A006953,
A075266,
A082633,
A086279,
A086280,
A195189,
A262235,
A262382,
A262383,
A262386,
A262387.
-
a := n -> numer(-Zeta(1 - 2*n)*(Psi(1, 2*n) + (Psi(0,2*n) + gamma)^2 - (Pi^2)/6)):
seq(a(n), n=1..17); # Peter Luschny, Apr 19 2018
-
a[n_] := Numerator[BernoulliB[2*n]*(HarmonicNumber[2*n - 1]^2 - HarmonicNumber[2*n - 1, 2])/(2*n)]; Table[a[n], {n, 1, 20}]
-
a(n) = numerator(bernfrac(2*n)*(sum(k=1,2*n-1,1/k)^2 - sum(k=1,2*n-1,1/k^2))/(2*n)); \\ Michel Marcus, Sep 23 2015
A262385
Denominators of a semi-convergent series leading to the second Stieltjes constant gamma_2.
Original entry on oeis.org
1, 60, 336, 21600, 133056, 825552000, 89100, 11435424000, 483113030400, 101889627840000, 1471926193920, 42280119968486400, 3425059028160, 209827678712652000, 1184296360402995840, 163066081742403840000, 1749151741873536000, 20373357051590182072392960000
Offset: 1
Denominators of 0/1, -1/60, 5/336, -469/21600, 6515/133056, -131672123/825552000, ...
Cf.
A001620,
A002206,
A195189,
A075266,
A262235,
A001067,
A006953,
A082633,
A262382,
A262383,
A086279,
A262384 (numerators of this series),
A086280,
A262386,
A262387.
-
a := n -> denom(-Zeta(1 - 2*n)*(Psi(1, 2*n) + (Psi(0,2*n) + gamma)^2 - (Pi^2)/6)):
seq(a(n), n=1..18); # Peter Luschny, Apr 19 2018
-
a[n_] := Denominator[BernoulliB[2*n]*(HarmonicNumber[2*n - 1]^2 - HarmonicNumber[2*n - 1, 2])/(2*n)]; Table[a[n], {n, 1, 20}]
-
a(n) = denominator(bernfrac(2*n)*(sum(k=1,2*n-1,1/k)^2 - sum(k=1,2*n-1,1/k^2))/(2*n)); \\ Michel Marcus, Sep 23 2015
A262386
Numerators of a semi-convergent series leading to the third Stieltjes constant gamma_3.
Original entry on oeis.org
0, 1, -17, 967, -4523, 33735311, -9301169, 127021899032857, -3546529522734769, 5633317707758173, -1935081812850766373, 779950247074296817622891, -1261508681536108282229, 350992098387568751020053498509, -17302487974885784968377519342317, 26213945071317075538702463006927083
Offset: 1
Numerators of -0/1, 1/120, -17/1008, 967/28800, -4523/49896, 33735311/101088000, ...
The sequence of denominators is
A262387.
Cf.
A001067,
A001620,
A002206,
A006953,
A075266,
A082633,
A086279,
A086280,
A195189,
A262235,
A262382,
A262383,
A262384,
A262385.
-
a[n_] := Numerator[-BernoulliB[2*n]*(HarmonicNumber[2*n - 1]^3 - 3*HarmonicNumber[2*n - 1]*HarmonicNumber[2*n - 1, 2] + 2*HarmonicNumber[2*n - 1, 3])/(2*n)]; Table[a[n], {n, 1, 20}]
-
a(n) = numerator(-bernfrac(2*n)*(sum(k=1,2*n-1,1/k)^3 -3*sum(k=1,2*n-1,1/k)*sum(k=1,2*n-1,1/k^2) + 2*sum(k=1,2*n-1,1/k^3))/(2*n));
A262856
Numerators of the Nielsen-Jacobsthal series leading to Euler's constant.
Original entry on oeis.org
1, 43, 20431, 2150797323119, 9020112358835722225404403, 51551916515442115079024221439308876243677598340510141
Offset: 1
Numerators of 1/12, 43/420, 20431/240240, 2150797323119/36100888223400, ...
Cf.
A075266,
A075267,
A001620,
A195189,
A002657,
A002790,
A262235,
A075266,
A006953,
A001067,
A262858 (denominators of this series).
-
List(List([1..6],n->n*Sum([2^n+1..2^(n+1)],k->(-1)^(k+1)/k)),NumeratorRat); # Muniru A Asiru, Oct 29 2018
-
[Numerator(n*(&+[(-1)^(k+1)/k: k in [2^n+1..2^(n+1)]])): n in [1..6]]; // G. C. Greubel, Oct 28 2018
-
a[n_] := Numerator[n*Sum[(-1)^(k + 1)/k, {k, 2^n + 1, 2^(n + 1)}]]; Table[a[n], {n, 1, 8}]
-
a(n) = numerator(n*sum(k=2^n + 1,2^(n + 1),(-1)^(k + 1)/k));
A262858
Denominators of the Nielsen-Jacobsthal series leading to Euler's constant.
Original entry on oeis.org
12, 420, 240240, 36100888223400, 236453376820564453502272320, 2225626015166235263233958200740039423756478781341512000
Offset: 1
Denominators of 1/12, 43/420, 20431/240240, 2150797323119/36100888223400, ...
Cf.
A075266,
A075267,
A001620,
A195189,
A002657,
A002790,
A262235,
A075266,
A006953,
A001067,
A262856 (numerators of this series).
-
List(List([1..6],n->n*Sum([2^n+1..2^(n+1)],k->(-1)^(k+1)/k)),DenominatorRat); # Muniru A Asiru, Oct 29 2018
-
[Denominator(n*(&+[(-1)^(k+1)/k: k in [2^n+1..2^(n+1)]])): n in [1..6]]; // G. C. Greubel, Oct 28 2018
-
a[n_] := Denominator[n*Sum[(-1)^(k + 1)/k, {k, 2^n + 1, 2^(n + 1)}]]; Table[a[n], {n, 1, 8}]
-
a(n) = denominator(n*sum(k=2^n + 1,2^(n + 1),(-1)^(k + 1)/k));
A358625
a(n) = numerator of Bernoulli(n, 1) / n for n >= 1, a(0) = 1.
Original entry on oeis.org
1, 1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0
Rationals: 1, 1/2, 1/12, 0, -1/120, 0, 1/252, 0, -1/240, 0, 1/132, ...
Note that a(68) = -4633713579924631067171126424027918014373353 but A120082(68) = -125235502160125163977598011460214000388469.
- Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, Vol. 84, Graduate Texts in Mathematics, Springer-Verlag, 2nd edition, 1990. [Prop. 15.2.4, p. 238]
- Peter Luschny, Table of n, a(n) for n = 0..300
- Arnold Adelberg, Shaofang Hong and Wenli Ren, Bounds of Divided Universal Bernoulli Numbers and Universal Kummer Congruences, Proceedings of the American Mathematical Society, Vol. 136(1), 2008, p. 61-71.
- Bernd C. Kellner, The structure of Bernoulli numbers, arXiv:math/0411498 [math.NT], 2004.
-
Concatenation([1, 1], List([2..45], n-> NumeratorRat(Bernoulli(n)/(n)))); # G. C. Greubel, Sep 19 2019
-
[1, 1] cat [Numerator(Bernoulli(n)/(n)): n in [2..45]]; // G. C. Greubel, Sep 19 2019
-
A358625 := n -> ifelse(n = 0, 1, numer(bernoulli(n, 1) / n)):
seq(A358625(n), n = 0.. 40);
# Alternative:
egf := 1 + x + log(1 - exp(-x)) - log(x): ser := series(egf, x, 42):
seq(numer(n! * coeff(ser, x, n)), n = 0..40);
-
Join[{1, 1}, Table[Numerator[BernoulliB[n] / n], {n, 2, 45}]]
-
a(n) = if (n<=1, 1, numerator(bernfrac(n)/n)); \\ Michel Marcus, Feb 24 2015
Original entry on oeis.org
0, 12, 120, 252, 240, 660, 32760, 84, 8160, 14364, 6600, 3036, 65520, 156, 24360, 429660, 16320, 204, 69090840, 228, 541200, 75852, 30360, 12972, 2227680, 3300, 82680, 43092, 48720, 20532, 3407203800, 372, 32640, 4271652, 2040, 328020, 10087262640
Offset: 0
A342319
a(n) = denominator(((i^n * PolyLog(1 - n, -i) + (-i)^n * PolyLog(1 - n, i))) / (4^n - 2^n)) if n > 0 and a(0) = 1. Here i denotes the imaginary unit.
Original entry on oeis.org
1, 2, 12, 56, 120, 992, 252, 16256, 240, 261632, 132, 4192256, 32760, 67100672, 12, 1073709056, 8160, 17179738112, 14364, 274877382656, 6600, 4398044413952, 276, 70368735789056, 65520, 1125899873288192, 12, 18014398375264256, 3480, 288230375614840832
Offset: 0
r(n) = 1, 1/2, 1/12, 1/56, 1/120, 5/992, 1/252, 61/16256, 1/240, 1385/261632, 1/132, ...
-
a := n -> `if`(n = 0, 1, `if`(n::even, denom(abs(bernoulli(n))/n), 4^n - 2^n)):
seq(a(n), n=0..29);
-
r[s_] := If[s == 0, 1, (I^s PolyLog[1 - s, -I] + (-I)^s PolyLog[1 - s, I]) / (4^s - 2^s)]; Table[r[n], {n, 0, 29}] // Denominator
Comments