A123233
Difference between the (10^n)-th prime and the Riemann-Gram approximation of the (10^n)-th prime.
Original entry on oeis.org
1, 0, 5, -4, -39, -24, 1823, -6566, -1844, -34087, 84846, -449836, -1117632, -3465179, -1766196, -11290074, 105510354, -208774399, 704933861
Offset: 0
a(1) = prime(10) - primeGR(10) = 29 - 29 = 0.
-
primeGR(n) =
\\ A good approximation for the n-th prime number using
\\ the Gram-Riemann approximation of Pi(x)
{ local(x,px,r1,r2,r,p10,b,e); b=10; p10=log(n)/log(10); if(Rg(b^p10*log(b^(p10+1)))< b^p10,m=p10+1,m=p10); r1 = 0; r2 = 7.18281828; for(x=1,400, r=(r1+r2)/2; px = Rg(b^p10*log(b^(m+r))); if(px <= b^p10,r1=r,r2=r); r=(r1+r2)/2; ); floor(b^p10*log(b^(m+r))+.5); }
Rg(x) =
\\ Gram's Riemann's Approx of Pi(x)
{ local(n=1,L,s=1,r); L=r=log(x); while(s<10^40*r, s=s+r/zeta(n+1)/n; n=n+1; r=r*L/n); (s) }
A129870
Difference between the (10^n)-th and the (10^n-1)-th prime.
Original entry on oeis.org
6, 18, 12, 6, 20, 6, 2, 4, 12, 12, 20, 12, 22, 26, 30, 6, 72, 152, 72, 24, 30, 96, 124, 50
Offset: 1
The (10^18)-th prime or A006988(18) = 44211790234832169331.
Using PARI, precprime(A006988(18)-1) = 44211790234832169179.
The difference is a(18) = 152.
A229661
Rounded percentage of primes less than 10^n.
Original entry on oeis.org
0, 40, 25, 17, 12, 10, 8, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0
There are 4 primes less than 10 (i.e., 2, 3, 5, 7), so a(1) = 40.
-
a[n_] := PrimePi[10^n]/10^(n-2) // Round;
(* or *) a[n_] := A006880[[n+1]]/10^(n-2) // Round; Table[Print["10^", n, " ", a[n], "%"]; a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 27 2013 *)
A235642
a(n) = prime(10^n) mod 10^n.
Original entry on oeis.org
0, 9, 41, 919, 4729, 99709, 485863, 9424673, 38074743, 801763489, 2097800623, 60727302517, 996224275833, 3780508946331, 75385758524527, 124508045065437, 4906913903735329, 85296581467695669, 211790234832169331, 5675465116607065549
Offset: 0
A297424
a(n) = tau((10^n)-th prime) where tau(n)=A000594(n) is Ramanujan's tau function.
Original entry on oeis.org
-24, 128406630, -1695266465052058, -4467161474022023509680, 2643202687128887204371152330, 5631587063815097155948902224731910, -6022712388820421179671063354886818730888, 3519878895631571325515625172934456394359869922, 452493700789420934344344052367209646628330983653992
Offset: 0
A301599
Numbers k at which the ratio r(k) = (k-th prime) / (average of first k primes) reaches a record high.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 9, 10, 12, 17, 25, 31, 35, 48
Offset: 1
The table below shows k, prime(k), the sum and average of the first k primes, and r(k), for each number k in the sequence, and also for k = 100, 1000, ..., 10^7.
.
n| a(n)=k prime(k) sum avg r(k)
--+--------------------------------------------------------
1| 1 2 2 2.000 1.00000
2| 2 3 5 2.500 1.20000
3| 3 5 10 3.333 1.50000
4| 4 7 17 4.250 1.64706
5| 5 11 28 5.600 1.96429
6| 7 17 58 8.286 2.05172
7| 9 23 100 11.111 2.07000
8| 10 29 129 12.900 2.24806
9| 12 37 197 16.417 2.25381
10| 17 59 440 25.882 2.27955
11| 25 97 1060 42.400 2.28774
12| 31 127 1720 55.484 2.28895
13| 35 149 2276 65.029 2.29130
14| 48 223 4661 97.104 2.29650
100 541 24133 241.330 2.24174
1000 7919 3682913 3682.913 2.15020
10000 104729 496165411 49616.541 2.11077
100000 1299709 62260698721 622606.987 2.08753
1000000 15485863 7472966967499 7472966.967 2.07225
10000000 179424673 870530414842019 87053041.484 2.06110
Comments