cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A261648 Expansion of Product_{k>=0} ((1+x^(2*k+1))/(1-x^(2*k+1)))^5.

Original entry on oeis.org

1, 10, 50, 180, 550, 1512, 3820, 9040, 20310, 43670, 90472, 181540, 354180, 674040, 1254640, 2289104, 4101430, 7228020, 12546030, 21473940, 36281656, 60565920, 99974140, 163297520, 264110180, 423211938, 672244600, 1059013320, 1655274320, 2568068120
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Comments

In general, if j > 0 and g.f. = Product_{k>=0} ((1 + x^(2*k+1))/(1 - x^(2*k+1)))^j, then a(n) ~ exp(Pi*sqrt(j*n/2)) * j^(1/4) / (2^(j/2 + 7/4) * n^(3/4)).

Crossrefs

Cf. A080054 (j=1), A007096 (j=2), A261647 (j=3), A014969 (j=4), A014970 (j=6), A014972 (j=8), A103261 (j=10).

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^5,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(5*n/2)) * 5^(1/4) / (16 * 2^(1/4) * n^(3/4)).

A320967 Expansion of Product_{k>0} theta_3(q^k)/theta_4(q^k), where theta_3() and theta_4() are the Jacobi theta functions.

Original entry on oeis.org

1, 4, 12, 36, 92, 220, 508, 1108, 2332, 4776, 9492, 18420, 35036, 65324, 119708, 216044, 384204, 674236, 1168968, 2003460, 3397300, 5704148, 9487740, 15642676, 25577900, 41495032, 66817812, 106837112, 169677372, 267755836, 419948980, 654799316, 1015276412, 1565765892
Offset: 0

Views

Author

Seiichi Manyama, Oct 25 2018

Keywords

Crossrefs

Self-convolution of A320968.

Programs

  • Mathematica
    With[{nmax=50}, CoefficientList[Series[Product[EllipticTheta[3, 0, q^k]/EllipticTheta[4, 0, q^k], {k, 1, nmax+2}], {q, 0, nmax}], q]] (* G. C. Greubel, Oct 29 2018 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(k=1,m+2, eta(q^(2*k))^6/(eta(q^k)^4* eta(q^(4*k))^2) )) \\ G. C. Greubel, Oct 29 2018

Formula

Expansion of Product_{k>0} eta(q^(2*k))^6 / (eta(q^k)^4*eta(q^(4*k))^2).

A261649 Expansion of Product_{k>=0} ((1+x^(3*k+1))/(1-x^(3*k+1)))^2.

Original entry on oeis.org

1, 4, 8, 12, 20, 36, 56, 80, 120, 180, 252, 348, 492, 680, 912, 1228, 1652, 2180, 2856, 3744, 4860, 6256, 8044, 10284, 13048, 16520, 20848, 26140, 32672, 40756, 50596, 62576, 77256, 95060, 116540, 142592, 174036, 211736, 257056, 311448, 376332, 453764, 546160
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(3*k+1))/(1-x^(3*k+1)))^2,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) * Gamma(1/3)^2 / (2^(7/4) * 3^(5/12) * Pi^(4/3) * n^(7/12)).

A261651 Expansion of Product_{k>=0} ((1+x^(3*k+1))/(1-x^(3*k+1)))^3.

Original entry on oeis.org

1, 6, 18, 38, 72, 138, 254, 432, 708, 1154, 1836, 2826, 4288, 6456, 9552, 13902, 20070, 28722, 40614, 56916, 79242, 109448, 149988, 204318, 276672, 372288, 498264, 663602, 879252, 1159470, 1522564, 1990788, 2592162, 3362638, 4346244, 5597100, 7183792, 9191004
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(3*k+1))/(1-x^(3*k+1)))^3,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(n)) * Gamma(1/3)^3 / (4 * Pi^2 * sqrt(3*n)).

A261652 Expansion of Product_{k>=0} ((1+x^(4*k+1))/(1-x^(4*k+1)))^3.

Original entry on oeis.org

1, 6, 18, 38, 66, 108, 182, 306, 486, 728, 1068, 1578, 2318, 3312, 4614, 6388, 8862, 12192, 16488, 22038, 29400, 39156, 51702, 67554, 87810, 113982, 147384, 189200, 241446, 307356, 390408, 493662, 621006, 778712, 974628, 1216284, 1511756, 1872840, 2315538
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Comments

In general, if j > 0, a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} ((1 + x^(a*k+b))/(1 - x^(a*k+b)))^j, then a(n) ~ Gamma(b/a)^j * 2^(j/2 - 3/2 - 2*b*j/a) * a^(-j/4 - 1/4 + b*j/(2*a)) * exp(Pi*sqrt(j*n/a)) * j^(1/4 - j/4 + b*j/(2*a)) * Pi^(b*j/a - j) * n^(j/4 - 3/4 - b*j/(2*a)).

Crossrefs

Cf. A015128 (a=1, b=1, j=1), A156616.
Cf. A080054 (a=2, b=1, j=1), A007096 (a=2, b=1, j=2), A261647 (a=2, b=1, j=3), A014969 (a=2, b=1, j=4), A261648 (a=2, b=1, j=5), A014970 (a=2, b=1, j=6), A014972 (a=2, b=1, j=8), A103261 (a=2, b=1, j=10).
Cf. A261610 (a=3, b=1, j=1), A261649 (a=3, b=1, j=2), A261651 (a=3, b=1, j=3).
Cf. A261611 (a=4, b=1, j=1), A261650 (a=4, b=1, j=2), A261652 (a=4, b=1, j=3).

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(4*k+1))/(1-x^(4*k+1)))^3,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(3*n)/2) * 2^(1/4) * Gamma(1/4)^3 / (8 * 3^(1/8) * Pi^(9/4) * n^(3/8)).

A261650 Expansion of Product_{k>=0} ((1+x^(4*k+1))/(1-x^(4*k+1)))^2.

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 40, 60, 80, 104, 144, 204, 272, 344, 440, 584, 768, 968, 1200, 1516, 1936, 2424, 2968, 3644, 4528, 5596, 6800, 8216, 10000, 12184, 14688, 17564, 21056, 25320, 30272, 35912, 42576, 50616, 60024, 70728, 83136, 97896, 115200, 134924, 157504
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(4*k+1))/(1-x^(4*k+1)))^2,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(n/2)) * 2^(3/2) * Gamma(1/4)^2 / (16 * Pi^(3/2) * sqrt(n)).

A289522 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=0} ((1 + x^(2*j+1))/(1 - x^(2*j+1)))^k.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 8, 4, 0, 1, 8, 18, 16, 6, 0, 1, 10, 32, 44, 32, 8, 0, 1, 12, 50, 96, 102, 56, 12, 0, 1, 14, 72, 180, 256, 216, 96, 16, 0, 1, 16, 98, 304, 550, 624, 428, 160, 22, 0, 1, 18, 128, 476, 1056, 1512, 1408, 816, 256, 30, 0, 1, 20, 162, 704, 1862, 3240, 3820, 3008, 1494, 404, 40, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 07 2017

Keywords

Examples

			Square array begins:
1,  1,   1,    1,    1,     1,  ...
0,  2,   4,    6,    8,    10,  ...
0,  2,   8,   18,   32,    50,  ...
0,  4,  16,   44,   96,   180,  ...
0,  6,  32,  102,  256,   550,  ...
0,  8,  56,  216,  624,  1512,  ...
		

Crossrefs

Columns k=0-6 give: A000007, A080054, A007096, A261647, A014969, A261648, A014970.
Rows n=0-3 give: A000012, A005843, A001105, A217873.
Main diagonal gives A291697.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[((1 + x^(2 i + 1))/(1 - x^(2 i + 1)))^k, {i, 0, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[(QPochhammer[-x, x^2]/QPochhammer[x, x^2])^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=0} ((1 + x^(2*j+1))/(1 - x^(2*j+1)))^k.
G.f. of column 2k: (theta_3(x)/theta_4(x))^k, where theta_() is the Jacobi theta function.
For asymptotics of column k see comment from Vaclav Kotesovec in A261648.

A308288 Expansion of Product_{i>=1, j>=1} theta_3(x^(i*j))/theta_4(x^(i*j)), where theta_() is the Jacobi theta function.

Original entry on oeis.org

1, 4, 16, 56, 172, 496, 1360, 3528, 8824, 21344, 50048, 114360, 255336, 557888, 1195952, 2519264, 5221076, 10660512, 21467904, 42674520, 83812560, 162753584, 312689168, 594740456, 1120498048, 2092059800, 3872731232, 7110830376, 12955269304, 23428775520
Offset: 0

Views

Author

Ilya Gutkovskiy, May 18 2019

Keywords

Comments

Convolution of the sequences A305050 and A308286.

Crossrefs

Programs

  • Mathematica
    nmax = 29; CoefficientList[Series[Product[Product[EllipticTheta[3, 0, x^(i j)]/EllipticTheta[4, 0, x^(i j)], {j, 1, nmax}], {i, 1, nmax}], {x, 0, nmax}], x]
    nmax = 29; CoefficientList[Series[Product[(EllipticTheta[3, 0, x^k]/EllipticTheta[4, 0, x^k])^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (theta_3(x^k)/theta_4(x^k))^tau(k), where tau = number of divisors (A000005).
G.f.: Product_{i>=1, j>=1} (Sum_{k=-oo..+oo} x^(i*j*k^2))/(Sum_{k=-oo..+oo} (-1)^k*x^(i*j*k^2)).
G.f.: Product_{i>=1, j>=1, k>=1} (1 + x^(i*j*k))^4/(1 + x^(2*i*j*k))^2.
G.f.: Product_{k>=1} (1 + x^k)^(4*tau_3(k))/(1 + x^(2*k))^(2*tau_3(k)), where tau_3 = A007425.

A294592 a(n) = [x^n] (theta_3(x)/theta_4(x))^n, where theta_() is the Jacobi theta function.

Original entry on oeis.org

1, 4, 32, 304, 3072, 32024, 340352, 3666016, 39878656, 437091892, 4819567552, 53401892240, 594093969408, 6631726263608, 74242911364864, 833237193123104, 9371924860764160, 105614054423502408, 1192210691317862048, 13478559927485340144, 152589996020498655232, 1729590806617202662528
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 03 2017

Keywords

Crossrefs

Programs

  • Maple
    S:= series((JacobiTheta3(0,x)/JacobiTheta4(0,x))^n,x,51):
    seq(coeff(S,x,n),n=0..50); # Robert Israel, Nov 03 2017
  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[3, 0, x]/EllipticTheta[4, 0, x])^n, {x, 0, n}], {n, 0, 21}]
    Table[SeriesCoefficient[Product[((1 + x^(2 k + 1))/(1 - x^(2 k + 1)))^(2 n), {k, 0, n}], {x, 0, n}], {n, 0, 21}]
    Table[SeriesCoefficient[(QPochhammer[-x, x^2]/QPochhammer[x, x^2])^(2 n), {x, 0, n}], {n, 0, 21}]
    (* Calculation of constant d: *) 1/r /. FindRoot[{s == EllipticTheta[3, 0, r*s]/EllipticTheta[4, 0, r*s], EllipticTheta[4, 0, r*s] + r*s*Derivative[0, 0, 1][EllipticTheta][4, 0, r*s] == r*Derivative[0, 0, 1][EllipticTheta][3, 0, r*s]}, {r, 1/10}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Jan 17 2024 *)

Formula

a(n) = [x^n] Product_{k>=0} ((1 + x^(2*k+1))/(1 - x^(2*k+1)))^(2*n).
From Vaclav Kotesovec, Nov 05 2017: (Start)
a(n) ~ c * d^n / sqrt(n), where
d = 11.61255065799699699891360038489317237925475956178123836149123386457... and
c = 0.34456510029264878768512693687607064416428117641473856418257649837... (End)

A326827 Expansion of 1 / (chi(-x)^10 * chi(-x^2)^4) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 10, 59, 270, 1045, 3582, 11194, 32488, 88716, 230150, 571363, 1365148, 3153522, 7069242, 15425719, 32849906, 68421073, 139645914, 279740407, 550790788, 1067244261, 2037348726, 3835457084, 7126887974, 13081454919, 23735283778, 42598577587, 75668099822
Offset: 0

Views

Author

Michael Somos, Oct 20 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 10*x + 59*x^2 + 270*x^3 + 1045*x^4 + 3582*x^5 + 11194*x^6 + ...
G.f. = q^3 + 10*q^7 + 59*q^11 + 270*q^15 + 1045*q^19 + 3582*q^23 + 11194*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^3 QPochhammer[ x^4]^2 / (QPochhammer[ x]^5))^2, {x, 0, n}];
    a[ n_] := SeriesCoefficient[ x^(-3/4) (EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x] / EllipticTheta[ 4, 0, x]^2 / 4)^2, {x, 0, n}];
    nmax = 20; CoefficientList[Series[Product[(1 + x^k)^10/(1 - x^(4*k - 2))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 31 2019 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 * eta(x^4 + A)^2 / eta(x + A)^5)^2, n))};

Formula

Expansion of q^(-3/4) * (eta(q^2)^3 * eta(q^4)^2 / eta(q)^5)^2 in powers of q.
Euler transform of period 4 sequence [10, 4, 10, 0, ...].
G.f.: Product_{n>=0} (1 - x^(2*n + 1))^-10 * (1 - x^(4*n + 2))^-4.
A093160(2*n + 1) = A123655(4*n + 3) = 4*a(n).
A232772(2*n + 1) = A215348(4*n + 3) = A215349(4*n + 3) = 8*a(n).
A007096(4*n + 3) = A212318(4*n + 3) = 16*a(n). A189925(4*n + 3) = A232358(4*n + 3) = -16*a(n).
a(n) ~ exp(2*Pi*sqrt(n)) / (256*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019
Previous Showing 11-20 of 20 results.