cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A156126 Sequence related to Hankel transform of super-ballot numbers.

Original entry on oeis.org

1, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680
Offset: 0

Views

Author

Paul Barry, Feb 04 2009

Keywords

Comments

Hankel transform of A007272 is 10,35,84,... with g.f. (10-5x+4x^2-x^3)/(1-x)^4.
Hankel transform of A156125 is 10^(n^2-1+0^n)*A156126(n).

Programs

  • Magma
    I:=[1, 35, 84, 165, 286]; [n le 5 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
  • Mathematica
    CoefficientList[Series[(1+31x-50x^2+35x^3-9x^4)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)
    LinearRecurrence[{4,-6,4,-1},{1,35,84,165,286},40] (* Harvey P. Dale, Mar 25 2022 *)

Formula

G.f.: (1+31x-50x^2+35x^3-9x^4)/(1-x)^4.
a(n) = (2*n+5)*(2*n+3)*(n+2)/3, n>0. - R. J. Mathar, Oct 13 2011

A182411 Triangle T(n,k) = (2*k)!*(2*n)!/(k!*n!*(k+n)!) with k=0..n, read by rows.

Original entry on oeis.org

1, 2, 2, 6, 4, 6, 20, 10, 12, 20, 70, 28, 28, 40, 70, 252, 84, 72, 90, 140, 252, 924, 264, 198, 220, 308, 504, 924, 3432, 858, 572, 572, 728, 1092, 1848, 3432, 12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870, 48620, 9724, 5304, 4420, 4760, 6120, 8976
Offset: 0

Views

Author

Bruno Berselli, Apr 27 2012

Keywords

Comments

This is a companion to the triangle A068555.
Row sum is 2*A132310(n-1) + A000984(n) for n>0, where A000984(n) = T(n,0) = T(n,n). Also:
T(n,1) = -A002420(n+1).
T(n,2) = A002421(n+2).
T(n,3) = -A002422(n+3) = 2*A007272(n).
T(n,4) = A002423(n+4).
T(n,5) = -A002424(n+5).
T(n,6) = A020923(n+6).
T(n,7) = -A020925(n+7).
T(n,8) = A020927(n+8).
T(n,9) = -A020929(n+9).
T(n,10) = A020931(n+10).
T(n,11) = -A020933(n+11).

Examples

			Triangle begins:
      1;
      2,    2;
      6,    4,    6;
     20,   10,   12,   20;
     70,   28,   28,   40,   70;
    252,   84,   72,   90,  140,  252;
    924,  264,  198,  220,  308,  504,  924;
   3432,  858,  572,  572,  728, 1092, 1848,  3432;
  12870, 2860, 1716, 1560, 1820, 2520, 3960,  6864, 12870;
  48620, 9724, 5304, 4420, 4760, 6120, 8976, 14586, 25740, 48620;
  ...
Sum_{k=0..8} T(8,k) = 12870 + 2860 + 1716 + 1560 + 1820 + 2520 + 3960 + 6864 + 12870 = 2*A132310(7) + A000984(8) = 2*17085 + 12870 = 47040.
		

References

  • Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third edition), page 11.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 103.

Crossrefs

Programs

  • Magma
    [Factorial(2*k)*Factorial(2*n)/(Factorial(k)*Factorial(n)*Factorial(k+n)): k in [0..n], n in [0..9]];
  • Mathematica
    Flatten[Table[Table[(2 k)! ((2 n)!/(k! n! (k + n)!)), {k, 0, n}], {n, 0, 9}]]

A361040 a(n) = 420*(3*n)!/(n!*(2*n + 3)!).

Original entry on oeis.org

70, 21, 30, 70, 210, 735, 2856, 11970, 53130, 246675, 1187550, 5890248, 29954680, 155602020, 823184880, 4424618730, 24116031162, 133072694475, 742405558650, 4182821562150, 23776769743650, 136248095712855, 786482994679200
Offset: 0

Views

Author

Peter Bala, Mar 04 2023

Keywords

Comments

The Catalan numbers A000108 are defined by the formula Catalan(n) = (2*n)!/(n!*(n+1)!). Gessel (1992) considered generalized Catalan numbers defined by Catalan(r,n) = J(r)*(2*n)!/(n!*(n+r+1)!), where J(r) = (2^r)*Product_{j = 0..r} (2*j + 1) is chosen so that these numbers are always integers. Gessel's generalized Catalan numbers are particular cases of super ballot numbers. See A135573 for a table of these generalized Catalan numbers.
For r = 0,1,2,..., it appears that there is an integer C(r) such the sequence {C(r)*(3*n)!/(n!*(2*n + r)!) : n >= 0} is integral. This is the case r = 3. For other cases see A005809 (r = 0, C(0) = 1), A001764 (r = 1, C(1) = 1), A000139 (r = 2, C(2) = 4) and A361041 (r = 4, C(4) = 1680).

Crossrefs

Programs

  • Maple
    seq( 420*(3*n)!/(n!*(2*n + 3)!), n = 0..20)

Formula

a(n) = 70*binomial(3*n,2*n) - 189*binomial(3*n,2*n+1) + 114*binomial(3*n,2*n+2) -32*binomial(3*n,2*n+3). Thus a(n) is an integer.
P-recursive: 2*(n + 1)*(2*n + 3)*a(n) = 3*(3*n - 1)*(3*n - 2)*a(n-1) with a(0) = 70.
a(n) ~ (27/4)^n * 105*sqrt(3/(16*Pi))/n^(7/2).
The o.g.f. A(x) satisfies the differential equation
x^2*(4 - 27*x^4)*A''(x) + 2*x*(7 - 27*x)*A'(x) + (6 - 6*x)*A(x) - 420 = 0, with A(0) = 70 and A'(0) = 21.

A387249 a(n) = 10/(n + 1) * Catalan(3*n).

Original entry on oeis.org

10, 25, 440, 12155, 416024, 16158075, 682341000, 30582833775, 1433226830360, 69533550916004, 3468169547356640, 176946775343535925, 9199844912200348840, 486018122664268428850, 26029619941269629306160, 1410698658798280045783575, 77251704848334920869407000, 4269325372507953547350453420
Offset: 0

Views

Author

Peter Bala, Aug 24 2025

Keywords

Comments

Compare with Catalan(n) = 1/(n + 1) * binomial(2*n, n).
For r >= 2, there is a constant K_r such that K_r/(n + 1) * Catalan(r*n) is integral for all n.

Crossrefs

Programs

  • Maple
    seq( 10/((n+1)*(3*n+1)) * binomial(6*n, 3*n), n = 0..20);
  • Mathematica
    A387249[n_] := 10*CatalanNumber[3*n]/(n + 1); Array[A387249, 20, 0] (* Paolo Xausa, Sep 02 2025 *)

Formula

a(n) = 10/((n + 1)*(3*n + 1)) * binomial(6*n, 3*n).
a(n) = (3*n + 2)/2 * (16*Catalan(3*n) - 8*Catalan(3*n+1) + Catalan(3n+2)) (shows a(n) to be an integer since Catalan(n) is odd iff n = 2^k - 1 for some k, so Catalan(3*n+2) is always even).
a(n) = (3*n + 2)/2 * A007272(3*n).
a(n) = 8*(2*n - 1)*(6*n - 1)*(6*n - 5)/((n + 1)*(3*n + 1)*(3*n - 1)) * a(n-1) with a(0) = 10.
a(n) ~ 10/(sqrt(27*Pi)) * 64^n/n^(5/2).
E.g.f.: 10*hypergeom([1/6, 1/2, 5/6], [2/3, 4/3, 2], 64*x). - Stefano Spezia, Aug 27 2025

A156125 a(n)=10^n*C(2n,n)/C(n+3,3).

Original entry on oeis.org

1, 5, 60, 1000, 20000, 450000, 11000000, 286000000, 7800000000, 221000000000, 6460000000000, 193800000000000, 5943200000000000, 185725000000000000, 5899500000000000000, 190095000000000000000, 6203100000000000000000
Offset: 0

Views

Author

Paul Barry, Feb 04 2009

Keywords

Comments

Hankel transform is 10^(n^2-1+0^n)*A156126(n).

Programs

  • Mathematica
    Table[10^n Binomial[2n,n]/Binomial[n+3,3],{n,0,20}] (* Harvey P. Dale, Mar 30 2022 *)

Formula

G.f.: F(1/2,1;4;40x);
a(n)=6*10^n*A000108(n)/((n+2)(n+3))=10^(n-1)*A007272(n).
(n+3)*a(n) +20*(1-2*n)*a(n-1)=0. - R. J. Mathar, Oct 25 2012

A182534 Array read by antidiagonals: coefficient of the Euler-Mascheroni constant in below expression.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 5, 4, 2, 6, 14, 10, 3, 4, 10, 42, 28, 6, 6, 5, 20, 132, 84, 14, 12, 6, 10, 35, 429, 264, 36, 28, 10, 12, 14, 70, 1430, 858, 99, 72, 20, 20, 14, 28, 126, 4862, 2860, 286, 198, 45, 40, 20, 28, 42, 252
Offset: 1

Views

Author

John M. Campbell, May 05 2012

Keywords

Comments

The (i,j)-entry of the array is the coefficient of the Euler-Mascheroni constant in: -2^(i+2j-1)/Pi*int(log(x)*cos(x)^i*sin(x)^(2j-1)/x, x=0..infinity); see Mathematica code below.
First row: A000108.
Second row: -A002420.
Third row: A007054.
Fourth row: A002421.
Fifth row: A007272.
Sixth row: -A002422.
Eighth row: A002423.
First column: A001405.
Second column: A089408.
Odd entries on main diagonal: A126596.

Examples

			Evaluate: -256/Pi*int(cos(x)^3*log(x)*sin(x)^5/x, x=0..infinity) = 3*eulergamma-log(9/8). Thus the (3,3) entry of the array is 3, the coefficient of the Euler-Mascheroni constant in this expression.
The array begins as:
| 1   1   2   5   14  42  132 429  ... |
| 2   2   4   10  28  84  264 858  ... |
| 3   2   3   6   14  36  99  286  ... |
| 6   4   6   12  28  72  198 572  ... |
| 10  5   6   10  20  45  110 286  ... |
| 20  10  12  20  40  90  220 572  ... |
| 35  14  14  20  35  70  154 364  ... |
| 70  28  28  40  70  140 308 728  ... |
| ... ... ... ... ... ... ... ...  ... |
		

Crossrefs

Programs

  • Mathematica
    A[a_, b_] :=
      A[a, b] =
       Array[Coefficient[
          Integrate[
            Log[x]*Cos[x]^#1*Sin[x]^(2 #2 - 1)/x, {x, 0,
             Infinity}] (2^(#1 + 2 #2 - 1))/(-\[Pi]), EulerGamma] &, {a, b}];
    A[11, 11];
    Print[A[11, 11] // MatrixForm];
    Table2 = {};
    k = 1;
    While[k < 11, Table1 = {};
      i = 1;
      j = k;
      While[0 < j,
        AppendTo[Table1,
        First[Take[First[Take[A[11, 11], {i, i}]], {j, j}]]];
        j = j - 1;
        i = i + 1];
        AppendTo[Table2, Table1];
        k++];
    Print[Flatten[Table2]]

A218440 Hankel transform of A078818.

Original entry on oeis.org

10, 135, 1844, 25145, 342846, 4674655, 63738280, 869062689, 11849550290, 161566989191, 2202943686300, 30036834314425, 409548106582534, 5584132130887935, 76138873929651536, 1038143078887634945, 14154938162574828570, 193000635905606023879, 2631537137933532600580
Offset: 0

Views

Author

Arkadiusz Wesolowski, Oct 28 2012

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(10-5x+14x^2-x^3)/(1-14x+6x^2-14x^3+x^4),{x,0,30}],x] (* Harvey P. Dale, Dec 09 2018 *)

Formula

G.f.: (10 - 5*x + 14*x^2 - x^3)/(1 - 14*x + 6*x^2 - 14*x^3 + x^4).
Previous Showing 11-17 of 17 results.