A156126
Sequence related to Hankel transform of super-ballot numbers.
Original entry on oeis.org
1, 35, 84, 165, 286, 455, 680, 969, 1330, 1771, 2300, 2925, 3654, 4495, 5456, 6545, 7770, 9139, 10660, 12341, 14190, 16215, 18424, 20825, 23426, 26235, 29260, 32509, 35990, 39711, 43680
Offset: 0
-
I:=[1, 35, 84, 165, 286]; [n le 5 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
-
CoefficientList[Series[(1+31x-50x^2+35x^3-9x^4)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 30 2012 *)
LinearRecurrence[{4,-6,4,-1},{1,35,84,165,286},40] (* Harvey P. Dale, Mar 25 2022 *)
A182411
Triangle T(n,k) = (2*k)!*(2*n)!/(k!*n!*(k+n)!) with k=0..n, read by rows.
Original entry on oeis.org
1, 2, 2, 6, 4, 6, 20, 10, 12, 20, 70, 28, 28, 40, 70, 252, 84, 72, 90, 140, 252, 924, 264, 198, 220, 308, 504, 924, 3432, 858, 572, 572, 728, 1092, 1848, 3432, 12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870, 48620, 9724, 5304, 4420, 4760, 6120, 8976
Offset: 0
Triangle begins:
1;
2, 2;
6, 4, 6;
20, 10, 12, 20;
70, 28, 28, 40, 70;
252, 84, 72, 90, 140, 252;
924, 264, 198, 220, 308, 504, 924;
3432, 858, 572, 572, 728, 1092, 1848, 3432;
12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870;
48620, 9724, 5304, 4420, 4760, 6120, 8976, 14586, 25740, 48620;
...
Sum_{k=0..8} T(8,k) = 12870 + 2860 + 1716 + 1560 + 1820 + 2520 + 3960 + 6864 + 12870 = 2*A132310(7) + A000984(8) = 2*17085 + 12870 = 47040.
- Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third edition), page 11.
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 103.
- Alexander Borisov, Quotient singularities, integer ratios of factorials and the Riemann Hypothesis, arXiv:math/0505167 [math.NT], 2005; International Mathematics Research Notices, Vol. 2008, Article ID rnn052, page 2 (Theorem 2).
- Ira Gessel, Integer quotients of factorials and algebraic multivariable hypergeometric series, MIT Combinatorics Seminar, September 2011 (slides).
- Hans-Christian Herbig and Mateus de Jesus Gonçalves, On the numerology of trigonometric polynomials, arXiv:2311.13604 [math.HO], 2023.
- Kevin Limanta and Norman Wildberger, Super Catalan Numbers, Chromogeometry, and Fourier Summation over Finite Fields, arXiv:2108.10191 [math.CO], 2021. See Table 1 p. 2 where terms are shown as an array.
-
[Factorial(2*k)*Factorial(2*n)/(Factorial(k)*Factorial(n)*Factorial(k+n)): k in [0..n], n in [0..9]];
-
Flatten[Table[Table[(2 k)! ((2 n)!/(k! n! (k + n)!)), {k, 0, n}], {n, 0, 9}]]
A361040
a(n) = 420*(3*n)!/(n!*(2*n + 3)!).
Original entry on oeis.org
70, 21, 30, 70, 210, 735, 2856, 11970, 53130, 246675, 1187550, 5890248, 29954680, 155602020, 823184880, 4424618730, 24116031162, 133072694475, 742405558650, 4182821562150, 23776769743650, 136248095712855, 786482994679200
Offset: 0
A387249
a(n) = 10/(n + 1) * Catalan(3*n).
Original entry on oeis.org
10, 25, 440, 12155, 416024, 16158075, 682341000, 30582833775, 1433226830360, 69533550916004, 3468169547356640, 176946775343535925, 9199844912200348840, 486018122664268428850, 26029619941269629306160, 1410698658798280045783575, 77251704848334920869407000, 4269325372507953547350453420
Offset: 0
-
seq( 10/((n+1)*(3*n+1)) * binomial(6*n, 3*n), n = 0..20);
-
A387249[n_] := 10*CatalanNumber[3*n]/(n + 1); Array[A387249, 20, 0] (* Paolo Xausa, Sep 02 2025 *)
A156125
a(n)=10^n*C(2n,n)/C(n+3,3).
Original entry on oeis.org
1, 5, 60, 1000, 20000, 450000, 11000000, 286000000, 7800000000, 221000000000, 6460000000000, 193800000000000, 5943200000000000, 185725000000000000, 5899500000000000000, 190095000000000000000, 6203100000000000000000
Offset: 0
-
Table[10^n Binomial[2n,n]/Binomial[n+3,3],{n,0,20}] (* Harvey P. Dale, Mar 30 2022 *)
A182534
Array read by antidiagonals: coefficient of the Euler-Mascheroni constant in below expression.
Original entry on oeis.org
1, 1, 2, 2, 2, 3, 5, 4, 2, 6, 14, 10, 3, 4, 10, 42, 28, 6, 6, 5, 20, 132, 84, 14, 12, 6, 10, 35, 429, 264, 36, 28, 10, 12, 14, 70, 1430, 858, 99, 72, 20, 20, 14, 28, 126, 4862, 2860, 286, 198, 45, 40, 20, 28, 42, 252
Offset: 1
Evaluate: -256/Pi*int(cos(x)^3*log(x)*sin(x)^5/x, x=0..infinity) = 3*eulergamma-log(9/8). Thus the (3,3) entry of the array is 3, the coefficient of the Euler-Mascheroni constant in this expression.
The array begins as:
| 1 1 2 5 14 42 132 429 ... |
| 2 2 4 10 28 84 264 858 ... |
| 3 2 3 6 14 36 99 286 ... |
| 6 4 6 12 28 72 198 572 ... |
| 10 5 6 10 20 45 110 286 ... |
| 20 10 12 20 40 90 220 572 ... |
| 35 14 14 20 35 70 154 364 ... |
| 70 28 28 40 70 140 308 728 ... |
| ... ... ... ... ... ... ... ... ... |
-
A[a_, b_] :=
A[a, b] =
Array[Coefficient[
Integrate[
Log[x]*Cos[x]^#1*Sin[x]^(2 #2 - 1)/x, {x, 0,
Infinity}] (2^(#1 + 2 #2 - 1))/(-\[Pi]), EulerGamma] &, {a, b}];
A[11, 11];
Print[A[11, 11] // MatrixForm];
Table2 = {};
k = 1;
While[k < 11, Table1 = {};
i = 1;
j = k;
While[0 < j,
AppendTo[Table1,
First[Take[First[Take[A[11, 11], {i, i}]], {j, j}]]];
j = j - 1;
i = i + 1];
AppendTo[Table2, Table1];
k++];
Print[Flatten[Table2]]
Original entry on oeis.org
10, 135, 1844, 25145, 342846, 4674655, 63738280, 869062689, 11849550290, 161566989191, 2202943686300, 30036834314425, 409548106582534, 5584132130887935, 76138873929651536, 1038143078887634945, 14154938162574828570, 193000635905606023879, 2631537137933532600580
Offset: 0
-
CoefficientList[Series[(10-5x+14x^2-x^3)/(1-14x+6x^2-14x^3+x^4),{x,0,30}],x] (* Harvey P. Dale, Dec 09 2018 *)
Comments