cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A229728 Decimal expansion of the square of the constant A130834.

Original entry on oeis.org

3, 2, 0, 9, 9, 1, 2, 3, 0, 0, 7, 2, 8, 1, 5, 7, 6, 7, 8, 6, 2, 9, 7, 4, 9, 4, 8, 1, 7, 7, 9, 9, 0, 5, 1, 5, 8, 7, 4, 8, 5, 9, 2, 1, 2, 4, 2, 5, 1, 8, 3, 4, 4, 9, 4, 8, 7, 4, 5, 8, 6, 0, 0, 5, 8, 4, 6, 1, 0, 2, 4, 6, 4, 1, 6, 2, 4, 2, 4, 0, 2, 0, 4, 0, 6, 6, 7, 6, 7, 1, 2, 1, 5, 1, 4, 1, 0, 8, 8, 7, 0, 9, 4, 2, 8, 4, 6, 6, 9, 1, 5, 8, 3, 8, 7, 5, 2, 2, 6, 9
Offset: 1

Views

Author

N. J. A. Sloane, Oct 01 2013

Keywords

Examples

			3.209912300728157678629749481779905158748592124251834494874586...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 232.

Crossrefs

Programs

Formula

From Amiram Eldar, Jun 12 2023: (Start)
Equals exp(4*G/Pi) = exp(4*A006752/A000796).
Equals A097469^4. (End)

A340176 Number of spanning trees in the halved Aztec diamond HMD_n.

Original entry on oeis.org

1, 1, 4, 208, 121856, 772189440, 51989627289600, 36837279603595907072, 273129993621426778551615488, 21114078836429317912110529666154496, 16975032309392309949804839529585109326888960
Offset: 0

Views

Author

Seiichi Manyama, Dec 31 2020

Keywords

Comments

*---*
| |
*---* *---*---*---*
| | | | | |
*---* *---*---*---* *---*---*---*---*---*
HMD_1 HMD_2 HMD_3
-------------------------------------------------
*---*
| |
*---*---*---*
| | | |
*---*---*---*---*---*
| | | | | |
*---*---*---*---*---*---*---*
HMD_4

Examples

			a(2) = 4;
      *   *           *---*           *---*           *---*
      |   |               |           |               |   |
  *---*---*---*   *---*---*---*   *---*---*---*   *---*   *---*
		

Crossrefs

Cf. A007341, A007725, A007726, A334088, A334089, A340139, A340166, A340185 (halved Aztec diamond HOD_n).

Programs

  • PARI
    default(realprecision, 120);
    {a(n) = round(prod(j=1, 2*n-1, prod(k=j+1, 2*n-1-j, 4-4*cos(j*Pi/(2*n))*cos(k*Pi/(2*n)))))}
    
  • PARI
    {a007341(n) = polresultant(polchebyshev(n-1, 2, x/2), polchebyshev(n-1, 2, (4-x)/2))};
    {a334088(n) = sqrtint(polresultant(polchebyshev(2*n, 1, x/2), polchebyshev(2*n, 1, I*x/2)))};
    {a(n) = if(n==0, 1, sqrtint(a007341(n)*a334088(n)/n))}
    
  • PARI
    default(realprecision, 120);
    {a(n) = if(n==0, 1, round(4^((n-1)^2)*prod(j=1, n-1, prod(k=j+1, n-1, 1-(cos(j*Pi/(2*n))*cos(k*Pi/(2*n)))^2))))} \\ Seiichi Manyama, Jan 02 2021
    
  • Python
    # Using graphillion
    from graphillion import GraphSet
    def make_HMD(n):
        s = 1
        grids = []
        for i in range(2 * n, 0, -2):
            for j in range(i - 2):
                a, b, c = s + j, s + j + 1, s + i + j
                grids.extend([(a, b), (b, c)])
            grids.append((s + i - 2, s + i - 1))
            s += i
        return grids
    def A340176(n):
        if n == 0: return 1
        universe = make_HMD(n)
        GraphSet.set_universe(universe)
        spanning_trees = GraphSet.trees(is_spanning=True)
        return spanning_trees.len()
    print([A340176(n) for n in range(7)])

Formula

a(n) = Product_{1<=j
a(n) = 2^(n-1) * A007726(n) * A334089(n) = sqrt(A007341(n) * A334088(n) / n) for n > 0.
a(n) = 4^(n-1) * A340139(n) = 4^((n-1)^2) * Product_{1<=j 0. - Seiichi Manyama, Jan 02 2021
a(n) ~ sqrt(Gamma(1/4)) * exp(4*G*n^2/Pi) / (Pi^(3/8) * n^(3/4) * 2^(n - 1/4) * (1 + sqrt(2))^n), where G is Catalan's constant A006752. - Vaclav Kotesovec, Jan 05 2021

A359992 Number of connected spanning subgraphs in the n X n grid graph.

Original entry on oeis.org

1, 5, 431, 555195, 10286937043, 2692324030864335, 9852929684161379901975, 501079193080617800221189943995, 352690403996687922642590703716802346343, 3426297680513758764075706102615040790667832304415, 458508006189588425325361635000918336126387961057365005349963
Offset: 1

Author

Andrew Howroyd, Jan 28 2023

Keywords

Comments

For n > 1, a(n) is the number of connected edge covers in the n X n grid graph.

Examples

			The a(2) = 5 connected spanning subgraphs are the following subgraphs and their rotations and reflections.
   o---o   o---o
   |       |   |
   o---o   o---o
		

Crossrefs

Main diagonal of A359993.

Formula

a(n) = A053765(n) - A359989(n).

A067518 Number of spanning trees in n X n X 2 grid.

Original entry on oeis.org

1, 384, 49766400, 2200248344641536, 32699232783861202944000000, 161655300770215803222365206216704000000, 264237966861625003904099008804894577790426446838104064
Offset: 1

Author

Sharon Sela (sharonsela(AT)hotmail.com), Jun 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2*n^2 - 2)/n^2*Product[If[n1+n2+n3 > 0, 3 - Cos[Pi*n1/n] - Cos[Pi*n2/n] - Cos[Pi*n3/2], 1], {n1, 0, n-1}, {n2, 0, n-1}, {n3, 0, 1}];
    Table[a[n] // Round, {n, 1, 7}] (* Jean-François Alcover, Feb 18 2019 *)

Formula

a(n) = 2^(2*n^2-2) / n^2 * Product_{n1=0..n-1, n2=0..n-1, n3=0..1, n1+n2+n3>0} (3 - cos(Pi*n1/n) - cos(Pi*n2/n) - cos(Pi*n3/2)).
a(n) ~ c * d^n * 2^(n^2) * exp(4*n^2*(G/Pi + m/Pi^2)) / sqrt(n), where m = Integral_{x=0..Pi/2, y=0..Pi/2} log(1 + 2*sin(x)^2 + 2*sin(y)^2) dy dx = A340422 = 2.5516988064039243609935616786056293143254369265492957275912213393835172..., d = (2*sqrt(2)-3)*(2+sqrt(3))*(sqrt(15)-4) = 0.08133113706589390743806107..., c = 5^(1/4) * Gamma(1/4) / (sqrt(3) * (2*Pi)^(3/4)) = 0.788729432659299631982768... and G is Catalan's constant A006752. Equivalently, m = Pi * Integral_{x=0..Pi/2} (log(1 + sqrt(1 + 2/(3 - 2*cos(x)^2))) + log((1 + 2*sin(x)^2)/4)/2) dx. - Vaclav Kotesovec, Jan 06 2021, updated Mar 17 2024

Extensions

More terms from André Pönitz (poenitz(AT)htwm.de), Jun 11 2003

A340183 a(n) = Product_{1<=j,k,m<=n-1} (4*sin(j*Pi/(2*n))^2 + 4*sin(k*Pi/(2*n))^2 + 4*sin(m*Pi/(2*n))^2).

Original entry on oeis.org

1, 6, 1157625, 170875128460147163136, 448524809573174705684873233798538664686384705625
Offset: 1

Author

Seiichi Manyama, Dec 31 2020

Keywords

Comments

(a(n)/(n*3^(n-1)))^(1/3) is an integer.

Crossrefs

Programs

  • Mathematica
    Round[Table[2^((n-1)^3)* Product[3 - Cos[j*Pi/n] - Cos[k*Pi/n] - Cos[m*Pi/n], {j, 1, n-1}, {k, 1, n-1}, {m, 1, n-1}], {n, 1, 5}]] (* Vaclav Kotesovec, Jan 04 2021 *)
  • PARI
    default(realprecision, 500);
    {a(n) = round(prod(j=1, n-1, prod(k=1, n-1, prod(m=1, n-1, 4*sin(j*Pi/(2*n))^2+4*sin(k*Pi/(2*n))^2+4*sin(m*Pi/(2*n))^2))))}

Formula

a(n) = Product_{1<=i,j,k<=n-1} (4*f(i*Pi/(2*n))^2 + 4*g(j*Pi/(2*n))^2 + 4*h(k*Pi/(2*n))^2), where f(x), g(x) and h(x) are sin(x) or cos(x).
Limit_{n->infinity} a(n)^(1/n^3) = exp(8*A340322/Pi^3). - Vaclav Kotesovec, Jan 05 2021

A349718 Number of spanning trees in the n X n grid graph where rotations and reflections are not counted as distinct.

Original entry on oeis.org

1, 1, 28, 12600, 69699849, 4070693024640, 2484046163254367574, 15778915364062895746351104, 1040828457711477326843036225608036, 711789875509887224494712166194197254144000, 5040627715175514814159607456023227379139001458908168
Offset: 1

Author

Mike Koss, Nov 26 2021

Keywords

Comments

The number of perfect mazes on an n X n grid of cells where rotations and reflections are not counted as distinct.
The sequence A007341 enumerates the same spanning trees or mazes but with duplicates due to symmetries of the square counted.
A lower bound for a(n) is the elements of A007341 divided by 8.
Terms can be computed using Burnside's lemma and Kirchhoff's matrix tree theorem applied to various graphs. See the PARI program link for technical details. - Andrew Howroyd, Nov 27 2021

Examples

			While there are 192 mazes on a 3 X 3 grid, only a(3) = 28 are distinct mod rotations and reflections.
21 are asymmetric:
    _____     _____     _____     _____     _____     _____     _____     _____
   |     |   |     |   |     |   |    _|   |    _|   |    _|   |    _|   |    _|
   | | |_|   | |_| |   | |_|_|   | |   |   | |  _|   | |_  |   | |_  |   | |_ _|
   |_|_ _|   |_ _|_|   |_ _ _|   |_|_|_|   |_|_ _|   |_ _|_|   |_|_ _|   |_ _ _|
    _____     _____     _____     _____     _____     _____     _____     _____
   |    _|   |    _|   |    _|   |    _|   |    _|   |  _  |   |  _  |   |  _  |
   |_|   |   |_|  _|   |_|_  |   | | | |   | |_| |   |_  | |   |_  |_|   |_ _| |
   |_ _|_|   |_ _ _|   |_ _ _|   |_|_ _|   |_ _ _|   |_ _|_|   |_ _ _|   |_ _ _|
    _____     _____     _____     _____     _____
   |  _ _|   |  _ _|   |_   _|   |_   _|   |_   _|
   |_    |   |_   _|   |    _|   |  _  |   |   | |
   |_ _|_|   |_ _ _|   |_|_ _|   |_ _|_|   |_|_ _|
.
5 have 2-way symmetry:
    _____     _____     _____     _____     _____
   |     |   |     |   |    _|   |  _ _|   |_   _|
   | | | |   |_| |_|   |_| | |   |_ _  |   |     |
   |_|_|_|   |_ _ _|   |_ _ _|   |_ _ _|   |_|_|_|
.
2 have 4-way symmetry:
    _____     _____
   |_   _|   |_  | |
   |_   _|   |    _|
   |_ _ _|   |_|_ _|
		

Crossrefs

Programs

Formula

a(n) ~ A007341(n) / 8; a(n) >= A007341(n) / 8.
a(2*n) = (A116469(2*n,2*n) + 4*n*A116469(2*n,n))/8. - Andrew Howroyd, Nov 27 2021

Extensions

Terms a(7) and beyond from Andrew Howroyd, Nov 27 2021

A351379 The number of grains of sand in the identity element for the 3D sandpile group on an n X n X n cubic grid.

Original entry on oeis.org

24, 54, 288, 480, 744, 1062, 1968, 2616, 3480, 4398, 6000, 7344, 9744, 11628, 14256, 16632, 20376, 23436, 27312, 30984, 37104, 41652, 47424, 52776, 60432, 66636, 75552, 82752, 93288, 101676, 112488, 121968, 135768, 146436, 163032, 175182, 191256, 204690, 221784, 236646, 257400, 273738, 296784
Offset: 2

Author

Keywords

Comments

The 3D sandpile model follows the same rules as the 2D model except that cells topple and transfer one grain of sand to their six nearest neighbors when the cell contains 6 or more grains. Cells containing 0 to 5 grains are stable.
See A307652 for details of the sandpile group identity.

Examples

			a(2) = 2 X 2 X 2 grid. Identity:
       Layer 1: | 3 3 |  Layer 2: | 3 3 |
                | 3 3 |           | 3 3 |  = 24 grains.
a(3) = 3 X 3 X 3 grid. Identity:
       Layer 1: | 3 2 3 |  Layer 2: | 2 1 2 |  Layer 3: | 3 2 3 |
                | 2 1 2 |           | 1 0 1 |           | 2 1 2 |
                | 3 2 3 |           | 2 1 2 |           | 3 2 3 |  = 54 grains.
		

Crossrefs

Cf. A307652 (square grid), A259013, A180230, A300006, A007341.

Formula

Identity element = ([10n] - ([10n])*)* , where [10n] is the all 10's grid of size n X n X n, and (x)* represents the topple stabilization of the grid x.
The sequence is approximately fitted by the cubic a(n) ~ 3.48*n^3, where 3.48 corresponds to the approximate grains-per-cube density of the identity element configurations.

A189002 Number of domino tilings of the n X n grid with upper left corner removed iff n is odd.

Original entry on oeis.org

1, 1, 2, 4, 36, 192, 6728, 100352, 12988816, 557568000, 258584046368, 32565539635200, 53060477521960000, 19872369301840986112, 112202208776036178000000, 126231322912498539682594816, 2444888770250892795802079170816, 8326627661691818545121844900397056
Offset: 0

Author

Alois P. Heinz, Apr 15 2011

Keywords

Examples

			a(3) = 4 because there are 4 domino tilings of the 3 X 3 grid with upper left corner removed:
  . .___.  . .___.  . .___.  . .___.
  ._|___|  ._|___|  ._| | |  ._|___|
  | |___|  | | | |  | |_|_|  |___| |
  |_|___|  |_|_|_|  |_|___|  |___|_|
		

Crossrefs

Main diagonal of A189006.
Bisection gives: A004003 (even part), A007341 (odd part).

Programs

  • Mathematica
    A[1, 1] = 1;
    A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2]; M[i_, j_] /; j < i := -M[j, i]; M[, ] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i - 1)*m + j - s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t + 1] = 1]; If[i < n, M[t, t + m] = 1 - 2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m - s, n*m - s}]] ]]];
    a[n_] := A[n, n];
    a /@ Range[0, 17] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz in A189006 *)

Formula

a(n) = A189006(n,n).

A307097 Number of configurations in the repeating cycle of the sandpile model in a bounded square of size 2n+1.

Original entry on oeis.org

2, 4, 4, 4, 6, 6, 8, 6, 10, 18, 26, 10, 10, 8, 12, 30, 8, 32, 14, 32, 52, 26, 60, 52, 34, 74, 14, 80, 36, 38, 24, 54, 26, 30, 36, 58, 22, 14, 26, 36, 38, 20, 36, 60, 24, 24, 18, 14, 24, 34, 70, 104, 48, 56, 36, 50, 50, 48, 152, 28, 110, 30, 172, 64, 104, 158, 150, 60, 36, 186, 52, 50
Offset: 1

Author

Scott R. Shannon, Mar 24 2019

Keywords

Comments

The Abelian sandpile model considers the behavior of grains of sand on a square grid when a square topples sand to its nearest neighbors when the number of grains in the square is greater than or equal to 4, where 4 is the number of nearest neighbors. If the grid is instead bounded by a square box then it is natural to extend this rule so that squares on the border also topple when they contain more or the same number of grains as the number of their nearest neighbors, i.e., 2 for corner squares, 3 for edge squares. Unlike the standard Abelian sandpile model on a finite grid, the square grid in this model does not lose sand, and assuming one keeps adding sand to the grid after each topple stabilization, eventually a critical number of grains will be added such that the resulting configurations will cycle. This sequence {a(n)} is the number of configurations in the cycle, for the sandpile model bounded by a square of size 2n+1, assuming the square grid starts with no sand and sand is continuously added to the center square until a cycle first occurs. As the toppling in a given area will repeat indefinitely, once the repeating cycle state is reached, one cannot topple the unstable squares in any random order and reach a stable configuration. To avoid such issues all squares are toppled simultaneously.

Examples

			For n=1 the square size is 2*1+1 = 3. The number of sand grains in each square is shown below, after the addition of 4, 8 and 12 grains to the central square:
.
   After 4         After 8         After 12
+---+---+---+   +---+---+---+   +---+---+---+
| 0 | 1 | 0 |   | 0 | 2 | 0 |   | 0 | 3 | 0 |
+---+---+---+   +---+---+---+   +---+---+---+
| 1 | 0 | 1 |   | 2 | 0 | 2 |   | 3 | 0 | 3 |
+---+---+---+   +---+---+---+   +---+---+---+
| 0 | 1 | 0 |   | 0 | 2 | 0 |   | 0 | 3 | 0 |
+---+---+---+   +---+---+---+   +---+---+---+
.
The edge squares now contain 3 grains, which means they are unstable as 3 equals their nearest neighbor count. This configuration thus topples to:
.
+---+---+---+
| 2 | 0 | 2 |
+---+---+---+
| 0 | 4 | 0 |
+---+---+---+
| 2 | 0 | 2 |
+---+---+---+
.
The central square is again unstable, as are the four corner squares as they contain 2 grains. This configuration topples to:
.
+---+---+---+
| 0 | 3 | 0 |
+---+---+---+
| 3 | 0 | 3 |
+---+---+---+
| 0 | 3 | 0 |
+---+---+---+
.
This is the same as the configuration after 12 grains above. These last two configurations cycle forever, thus a(1) = 2.
		

Crossrefs

Cf. A007341 (order of the sandpile group of the (n-1)X(n-1) grid graph).

A351994 Number of spanning trees in a hexagon of size n in the triangular grid.

Original entry on oeis.org

1, 320, 2300606464, 289899537900576358400, 614482906548854364363387716704247808, 21564742087547836976004856537464240189331001616154755072, 12433415382338420812828401445037903120443542018197863908895102595928462876835840
Offset: 0

Author

Peter Kagey, Feb 28 2022

Keywords

Comments

The hexagon of size n in the triangular grid has A003215(n) vertices.

Crossrefs

Cf. A007341 (square in square grid), A116469 (rectangle in square grid), A174579 (triangle in triangular grid), A351888 (triangle in hexagonal grid), A352022 (hexagon in hexagonal grid).
Previous Showing 11-20 of 23 results. Next