cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A283526 Pierce expansion of the number Sum_{k >= 1} 1/(2^(2^k - 1)).

Original entry on oeis.org

1, 2, 3, 4, 5, 16, 17, 256, 257, 65536, 65537, 4294967296, 4294967297, 18446744073709551616, 18446744073709551617, 340282366920938463463374607431768211456, 340282366920938463463374607431768211457
Offset: 0

Views

Author

Kutlwano Loeto, Mar 10 2017

Keywords

Comments

This sequence is the Pierce expansion of the number 2*s(2) - 1 = 0.632843018043786287416159475061... where s(u) = Sum_{k>=0} 1/u^(2^k) that has been considered by J. Shallit in A007400. The continued fraction expansion of this number is essentially A006466.

Examples

			The Pierce expansion of 0.6328430180437862 starts as 1 - 1/2 + 1/(2*3) - 1/(2*3*4) + 1/(2*3*4*5) - 1/(2*3*4*5*16) + ...
		

Crossrefs

Programs

  • Maple
    L:=[1]: for k from 0 to 6 do: L:=[op(L),2^(2^k),2^(2^k)+1]: od: print(L);
  • Mathematica
    {1}~Join~Map[{#, # + 1} &, 2^2^Range[0, 8]] // Flatten (* Michael De Vlieger, Mar 18 2017 *)

Formula

a(0) = 1, a(2k+1) = 2^(2^k), a(2k+2) = 2^(2^k) + 1.

A061678 Continued fraction for Sum_{n>=0} 1/3^(3^n).

Original entry on oeis.org

0, 2, 1, 2, 3, 26, 1, 2, 2, 1, 2, 19682, 1, 1, 1, 2, 2, 1, 26, 3, 2, 1, 2, 7625597484986, 1, 1, 1, 2, 3, 26, 1, 2, 2, 1, 1, 1, 19682, 2, 1, 2, 2, 1, 26, 3, 2, 1, 2, 443426488243037769948249630619149892802, 1, 1, 1, 2, 3, 26, 1, 2, 2, 1, 2, 19682
Offset: 0

Views

Author

Jason Earls, Jun 23 2001

Keywords

Comments

The continued fraction has a "folded" overall structure. Apart from a(0) and from the record values of the form 3^(3^k)-1 (k >= 0), the only terms are 1 and 3. This follows from the theorem in Shallit's paper. - Georg Fischer, Aug 29 2022

Examples

			0.370421175633926798495743189411...
		

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[Sum[1/3^(3^i), {i, 0, 5}]] (* Michael De Vlieger, Jul 01 2018 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 8000); x=contfrac(suminf(n=0, 1/3^(3^n))); for (n=0, 382, write("b061678.txt", n, " ", x[n+1])) } \\ Harry J. Smith, Jul 26 2009

A232734 Decimal expansion of Integral {x=0..infinity} 1/2^(2^x) dx.

Original entry on oeis.org

5, 4, 6, 3, 0, 6, 8, 3, 5, 9, 5, 2, 4, 8, 2, 7, 4, 1, 7, 3, 6, 0, 9, 8, 7, 6, 9, 6, 2, 4, 1, 0, 1, 3, 8, 8, 9, 3, 7, 6, 3, 5, 5, 3, 9, 0, 8, 1, 6, 5, 9, 1, 3, 5, 4, 1, 6, 7, 8, 3, 3, 9, 9, 1, 7, 6, 1, 6, 3, 6, 8, 9, 8, 4, 1, 1, 9, 6, 5, 7, 6, 7, 6, 1, 7, 4, 1, 2, 2, 1, 6, 3, 4, 1, 0, 3, 9, 5, 4, 6
Offset: 0

Views

Author

Jean-François Alcover, Nov 29 2013

Keywords

Examples

			0.546306835952482741736098769624101388937635539081659135416783399176163689841...
		

Crossrefs

Cf. A007400, A007404 (sum instead of integral).

Programs

  • Mathematica
    RealDigits[-ExpIntegralEi[-Log[2]]/Log[2], 10, 100] // First
  • PARI
    eint1(log(2))/log(2) \\ Charles R Greathouse IV, Dec 02 2013

Formula

-Ei(-log(2))/log(2), where Ei is the exponential integral function.
Also equals (2*Integral_{x = 0..1/2} log(log(1/x)) dx - log(log(2)))/(2*log(2)).
From Peter Bala, Feb 05 2024: (Start)
Equals 1/log(2) * Integral_{x >= 1} 1/(x * 2^x) dx.
Equals 1/log(4) * Integral_{x = 0..1} 1/(log(2) - log(x)) dx.
Equals Integral_{x >= 1} log(x)/2^x dx = (log(2))^2 * Integral_{x >= 0} x*(2^x) /(2^(2^x)). See Gradsteyn and Ryzhik, Section 8.212, formulas (4) and (16). (End)

A073096 Maximal element in continued fraction for s(n) = sum( k>=n,1/2^(2^k) ).

Original entry on oeis.org

6, 6, 18, 258, 65538, 4294967298, 18446744073709551618, 340282366920938463463374607431768211458, 115792089237316195423570985008687907853269984665640564039457584007913129639938
Offset: 0

Views

Author

Benoit Cloitre, Aug 18 2002

Keywords

Examples

			Continued fraction expansion of 1/2^(2^5)+1/2^(2^6)+1/2^(2^7)+...is [0, 4294967295, 4294967298, 4294967296, 4294967296,... ] where the maximum element is 4294967298, hence a(5)=4294967298
		

Crossrefs

Cf. A007400 for case n=0.

Formula

a(0)=6; for n>0 a(n)=2^(2^n)+2.
a(n) = A063486(n)-3 for n>0. - R. J. Mathar, Apr 22 2007

A081778 Maximum element is the continued fraction for n*sum(k>=0,1/2^(2^k)).

Original entry on oeis.org

6, 2, 19, 4, 33, 9, 46, 7, 60, 16, 72, 12, 85, 23, 99, 16, 79, 29, 126, 22, 139, 35, 153, 23, 166, 43, 180, 30, 192, 49, 205, 31, 219, 56, 232, 40, 246, 62, 259, 39, 273, 69, 286, 48, 300, 76, 303, 48, 229, 83, 223, 58, 352, 89, 366, 55, 367, 95, 380, 67, 406, 102, 296, 63
Offset: 1

Views

Author

Benoit Cloitre, Apr 10 2003

Keywords

Crossrefs

Cf. A007400.

Formula

a(n)=n for n=2, 4, 12, 16, 48, 80, 108, 112, 123, 144.....

A173995 Continued fraction expansion of sum of reciprocals of Fermat primes.

Original entry on oeis.org

0, 1, 1, 2, 9, 1, 3, 5, 1, 2, 1, 1, 1, 1, 3, 1, 7, 1, 31, 1, 2, 4, 5
Offset: 1

Views

Author

Jonathan Vos Post, Mar 04 2010

Keywords

Comments

If there are only five Fermat primes, a(24) = 2 is the last term of this sequence. Otherwise, a(24) = a(25) = 1 and a(26) is large (billions of digits).
This sequence is finite if and only if A019434 is finite.

Examples

			(1/3) + (1/5) + (1/17) + (1/257) + (1/65537) = 2560071829/4294967295 = 0 + 1/1+ 1/1+ 1/2+ 1/9+ 1/1+ 1/3+ 1/5+ 1/1+ 1/2+ 1/1+ 1/1+ 1/1+ 1/1+ 1/3+ 1/1+ 1/7+ 1/1+ 1/31+ 1/1+ 1/2+ 1/4+ 1/5+ 1/2.
		

References

  • S. W. Golomb, Irrationality of the sum of reciprocals of fermat numbers and other functions, NASA Technical Report 19630013175, Accession ID 63N23055, Contract/grant NAS7-100, 4 pp., Jet Propulsion Laboratory, Jan 01 1962.

Crossrefs

Cf. A019434, A000215, A159611, A173898 (sum of reciprocals of Mersenne primes), A007400.

Programs

  • Mathematica
    (* Assuming 65537 is the largest Fermat prime *) ContinuedFraction[Sum[1/(2^(2^n) + 1), {n, 0, 4}]] (* Alonso del Arte, Apr 21 2013 *)

Formula

Continued fraction of Sum_{i >= 1} 1/A019434(i).

Extensions

Sequence corrected and comments added by Charles R Greathouse IV, Feb 04 2011

A235063 Continued fraction expansion of Sum(i=1..inf, 1/2^(2^i+1) ).

Original entry on oeis.org

2, 2, 4, 2, 8, 3, 8, 1, 8, 3, 4, 2, 12, 2, 8, 1, 8, 3, 4, 2, 8, 3, 8, 1, 12, 2, 4, 2, 12, 2, 8, 1, 8, 3, 4, 2, 8, 3, 8, 1, 8, 3, 4, 2, 12, 2, 8, 1, 12, 2, 4, 2, 8, 3, 8, 1, 12, 2, 4, 2, 12, 2, 8, 1, 8, 3, 4, 2, 8, 3, 8, 1, 8, 3, 4, 2, 12, 2, 8, 1, 8, 3, 4, 2, 8, 3, 8, 1, 12, 2, 4, 2, 12, 2, 8, 1, 12, 2, 4
Offset: 0

Views

Author

Ralf Stephan, Jan 03 2014

Keywords

Examples

			0.40821075451094657... = 2/(2+1/(2+1/(4+1/(2+1/(8+1/(3+1/8...
		

Crossrefs

Cf. A007400.

Programs

  • PARI
    a(n)=contfrac(suminf(i=0, 1/2^(2^i+1)))[n+1]

Formula

0.40821075451094657... = (1/2) A007400.
Recurrence: a(8n)=1, a(8n+4)=a(16n+14)=a(32n+26)=2, a(16n+6)=a(32n+10)=3, a(8n+3)=4, a(8n+7)=a(16n+5)=a(32n+9)=8, a(16n+13)=a(32n+25)=12, a(8n+1)=a(4n+1), a(8n+2)=a(4n+2), starting 2,2,4 (conjectured).

A347589 Continued fraction for Sum_{k>=0} 1/2^(3^k).

Original entry on oeis.org

0, 1, 1, 1, 2, 7, 1, 1, 1, 1, 1, 511, 2, 1, 1, 1, 7, 2, 1, 1, 1, 134217727, 2, 1, 2, 7, 1, 1, 1, 2, 511, 1, 1, 1, 1, 1, 7, 2, 1, 1, 1, 2417851639229258349412351, 2, 1, 2, 7, 1, 1, 1, 1, 1, 511, 2, 1, 1, 1, 7, 2, 1, 2, 134217727, 1, 1, 1, 2, 7, 1, 1, 1, 2, 511, 1, 1, 1, 1, 1, 7, 2, 1, 1, 1
Offset: 0

Views

Author

Benoit Cloitre, Sep 11 2021

Keywords

Crossrefs

Cf. A007400.

Programs

  • Mathematica
    ContinuedFraction[N[Sum[1/2^(3^k),{k,0,Infinity}],250]] (* Stefano Spezia, Sep 11 2021 *)
  • PARI
    my(v=contfrac(suminf(k=0, 1/2^(3^k)))); Vec(v, #v-1) \\ Michel Marcus, Sep 11 2021 and Sep 30 2024

Formula

a(5*2^k+2) = 2^(3^(k+1)) - 1. Other terms are obtained by symmetry around (5*2^k,5*2^k+1,5*2^k+2,5*2^k+3). For instance 1, 1, 1, 2, 7, 1, 1, 1, (1, 1, 511, 2), 1, 1, 1, 7, 2, 1, 1, 1.
Previous Showing 21-28 of 28 results.