cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A111221 d_11(n), tau_11(n), number of ordered factorizations of n as n = rstuvwxyzab (11-factorizations).

Original entry on oeis.org

1, 11, 11, 66, 11, 121, 11, 286, 66, 121, 11, 726, 11, 121, 121, 1001, 11, 726, 11, 726, 121, 121, 11, 3146, 66, 121, 286, 726, 11, 1331, 11, 3003, 121, 121, 121, 4356, 11, 121, 121, 3146, 11, 1331, 11, 726, 726, 121, 11, 11011, 66, 726, 121, 726, 11, 3146, 121
Offset: 1

Views

Author

Gerald McGarvey, Oct 25 2005

Keywords

Crossrefs

Cf. tau_1(n): A000012
Cf. tau_2(n)...tau_6(n): A000005, A007425, A007426, A061200, A034695.
Cf. tau_7(n)...tau_10(n): A111217, A111218, A111219, A111220.
Cf. tau_12(n): A111306.
Column k=11 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 11], {n, 55}] (* Robert G. Wilson v, Nov 02 2005 *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 11], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,m,sumdiv(m,o,sumdiv(o,p,sumdiv(p,q,sumdiv(q,x,numdiv(x)))))))))),","))
    
  • PARI
    a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+10, 10)) \\ Charles R Greathouse IV, Oct 28 2017

Formula

G.f.: Sum_{k>=1} tau_10(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+10,10). - Amiram Eldar, Sep 13 2020

A111306 d_12(n), tau_12(n), number of ordered factorizations of n as n = rstuvwxyzabc (12-factorizations).

Original entry on oeis.org

1, 12, 12, 78, 12, 144, 12, 364, 78, 144, 12, 936, 12, 144, 144, 1365, 12, 936, 12, 936, 144, 144, 12, 4368, 78, 144, 364, 936, 12, 1728, 12, 4368, 144, 144, 144, 6084, 12, 144, 144, 4368, 12, 1728, 12, 936, 936, 144, 12, 16380, 78, 936, 144, 936, 12, 4368, 144
Offset: 1

Views

Author

Gerald McGarvey, Nov 02 2005

Keywords

Crossrefs

Column k=12 of A077592.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=1, 1,
          add(b(d, k-1), d=numtheory[divisors](n)))
        end:
    a:= n-> b(n, 12):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jun 12 2024
  • Mathematica
    tau[k_,1]:=1; tau[k_,n_]:=Times@@(Binomial[#+k-1,k-1]&/@FactorInteger[n][[All,2]]); Table[tau[12,n],{n,1000}] (* Enrique Pérez Herrero, Jan 17 2013 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,i,sumdiv(i,j,sumdiv(j,k,sumdiv(k,l,sumdiv(l,m,sumdiv(m,o,sumdiv(o,p,sumdiv(p,q,sumdiv(q,r,sumdiv(r,x,numdiv(x))))))))))),","))
    
  • PARI
    a(n,f=factor(n))=f=f[,2]; prod(i=1,#f, binomial(f[i]+11, 11)) \\ Charles R Greathouse IV, Oct 28 2017

Formula

G.f.: Sum_{k>=1} tau_11(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018
Multiplicative with a(p^e) = binomial(e+11,11). - Amiram Eldar, Sep 13 2020

A360997 Multiplicative with a(p^e) = e + 3.

Original entry on oeis.org

1, 4, 4, 5, 4, 16, 4, 6, 5, 16, 4, 20, 4, 16, 16, 7, 4, 20, 4, 20, 16, 16, 4, 24, 5, 16, 6, 20, 4, 64, 4, 8, 16, 16, 16, 25, 4, 16, 16, 24, 4, 64, 4, 20, 20, 16, 4, 28, 5, 20, 16, 20, 4, 24, 16, 24, 16, 16, 4, 80, 4, 16, 20, 9, 16, 64, 4, 20, 16, 64, 4, 30, 4, 16
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 28 2023

Keywords

Crossrefs

Cf. A005361 (multiplicative with a(p^e) = e), A000005 (e+1), A343443 (e+2), this sequence (e+3), A322327 (2*e), A048691 (2*e+1), A360908 (2*e-1), A226602 (3*e), A048785 (3*e+1), A360910 (3*e-1), A360909 (3*e+2), A360911 (3*e-2), A322328 (4*e), A360996 (5*e).

Programs

  • Mathematica
    g[p_, e_] := e+3; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+2*X-2*X^2)/(1-X)^2)[n], ", "))

Formula

Dirichlet g.f.: Product_{primes p} (1 + (4*p^s - 3)/(p^s - 1)^2).
Dirichlet g.f.: zeta(s)^4 * Product_{primes p} (1 - 5/p^(2*s) + 6/p^(3*s) - 2/p^(4*s)).
From Amiram Eldar, Sep 01 2023: (Start)
a(n) = A000005(A361264(n)).
a(n) = A074816(n)*A007426(n)/A007425(n). (End)

A127172 Cube of A051731.

Original entry on oeis.org

1, 3, 1, 3, 0, 1, 6, 3, 0, 1, 3, 0, 0, 0, 1, 9, 3, 3, 0, 0, 1, 3, 0, 0, 0, 0, 0, 1, 10, 6, 0, 3, 0, 0, 0, 1, 6, 0, 3, 0, 0, 0, 0, 0, 1, 9, 3, 0, 0, 0, 3, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 06 2007

Keywords

Comments

Nonzero terms in every column = A007425: (1, 3, 3, 6, 3, 9, 3, ...).
Row sums = A007426: (1, 4, 4, 20, 4, 16, ...).
A127172 * mu(n) = d(n); or A127172 * A008683 = A000005.
A127172 * d(n) = tau_5(n); or A127172 * A000005 = A061200.
A127172 * phi(n) = A007429: (1, 4, 5, 11, 7, 20, ...); or: A127172 * A000010 = A007429.
Note that A051731 * d(n) = row sums of A127172; or A051731 * A000005 = A007425.
Also, A126988 * mu(n) = phi(n); or A126988 * A008683 = A000010.
A126988 * phi(n) = A018804: (1, 3, 5, 8, 9, 15, ...); = A127170 * mu(n).

Examples

			First few rows of the triangle:
   1;
   3, 1;
   3, 0, 1;
   6, 3, 0, 1;
   3, 0, 0, 0, 1;
   9, 3, 3, 0, 0, 1;
   3, 0, 0, 0, 0, 0, 1;
  10, 6, 0, 3, 0, 0, 0, 1;
   6, 0, 3, 0, 0, 0, 0, 0, 1;
   9, 3, 0, 0, 3, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Formula

Cube of A051731 A007425: (1, 3, 3, 6, 3, 9, 3, ...) in every column k, interspersed with (k-1) zeros.

A318768 a(n) = Sum_{d|n} (-1)^(n/d+1) * Sum_{j|d} tau(j), where tau = number of divisors (A000005).

Original entry on oeis.org

1, 2, 4, 2, 4, 8, 4, 0, 10, 8, 4, 8, 4, 8, 16, -5, 4, 20, 4, 8, 16, 8, 4, 0, 10, 8, 20, 8, 4, 32, 4, -14, 16, 8, 16, 20, 4, 8, 16, 0, 4, 32, 4, 8, 40, 8, 4, -20, 10, 20, 16, 8, 4, 40, 16, 0, 16, 8, 4, 32, 4, 8, 40, -28, 16, 32, 4, 8, 16, 32, 4, 0, 4, 8, 40, 8, 16, 32, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 03 2018

Keywords

Crossrefs

Cf. A000005, A007425, A007426, A051062 (positions of 0's), A288571.

Programs

  • Mathematica
    Table[Sum[(-1)^(n/d + 1) Sum[DivisorSigma[0, j], {j, Divisors[d]}], {d, Divisors[n]}], {n, 79}]
    nmax = 79; Rest[CoefficientList[Series[Sum[DivisorSum[k, DivisorSigma[0, #] &] x^k/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    nmax = 79; Rest[CoefficientList[Series[Log[Product[(1 + x^k)^(DivisorSum[k, DivisorSigma[0, #] &]/k), {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    f[p_, e_] := If[p == 2, 1 + (7 - e^2)*e/6, Binomial[e + 3, 3]]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d+1) * sumdiv(d, j, numdiv(j))); \\ Michel Marcus, Sep 04 2018

Formula

G.f.: Sum_{k>=1} tau_3(k)*x^k/(1 + x^k), where tau_3() = A007425.
L.g.f.: log(Product_{k>=1} (1 + x^k)^(tau_3(k)/k)) = Sum_{n>=1} a(n)*x^n/n.
Multiplicative with a(2^e) = 1 + (7-e^2)*e/6, and a(p^e) = binomial(e+3,3) for an odd prime p. - Amiram Eldar, Oct 25 2020
From Amiram Eldar, Dec 18 2023: (Start)
Dirichlet g.f.: zeta(s)^4 * (1 - 1/2^(s-1)).
Sum_{k=1..n} a(k) ~ (log(2)/2) * n * (log(n)^2 + (8 * gamma - log(2) - 2) * log(n) + 12 * gamma^2 - 8 * gamma + log(2) + 2 - 4 * gamma * log(2) + log(2)^2/3 - 8 * gamma_1), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). (End)

A341880 Number of ordered factorizations of n into 4 factors > 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 12, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 28, 0, 0, 0, 0, 0, 0, 0, 16, 1, 0, 0, 12, 0, 0, 0, 4, 0, 12, 0, 0, 0, 0, 0, 40, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 28, 0, 0, 0, 16
Offset: 16

Views

Author

Ilya Gutkovskiy, Feb 22 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; series(x*(1+add(b(n/d),
          d=numtheory[divisors](n) minus {1, n})), x, 5)
        end:
    a:= n-> coeff(b(n), x, 4):
    seq(a(n), n=16..112);  # Alois P. Heinz, Feb 22 2021
  • Mathematica
    b[n_] := b[n] = Series[x*(1 + Sum[b[n/d],
         {d, Divisors[n] ~Complement~ {1, n}}]), {x, 0, 5}];
    a[n_] := Coefficient[b[n], x, 4];
    Table[a[n], {n, 16, 112}] (* Jean-François Alcover, Feb 28 2022, after Alois P. Heinz *)

Formula

Dirichlet g.f.: (zeta(s) - 1)^4.
a(n) = 6 * A000005(n) - 4 * A007425(n) + A007426(n) - 4 for n > 1.

A341881 Number of ordered factorizations of n into 5 factors > 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 15
Offset: 32

Views

Author

Ilya Gutkovskiy, Feb 22 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; series(x*(1+add(b(n/d),
          d=numtheory[divisors](n) minus {1, n})), x, 6)
        end:
    a:= n-> coeff(b(n), x, 5):
    seq(a(n), n=32..128);  # Alois P. Heinz, Feb 22 2021
  • Mathematica
    b[n_] := b[n] = Series[x*(1 + Sum[b[n/d],
         {d, Divisors[n] ~Complement~ {1, n}}]), {x, 0, 6}];
    a[n_] := Coefficient[b[n], x, 5];
    Table[a[n], {n, 32, 128}] (* Jean-François Alcover, Feb 28 2022, after Alois P. Heinz *)

Formula

Dirichlet g.f.: (zeta(s) - 1)^5.
a(n) = -10 * A000005(n) + 10 * A007425(n) - 5 * A007426(n) + A061200(n) + 5 for n > 1.

A341882 Number of ordered factorizations of n into 6 factors > 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6
Offset: 64

Views

Author

Ilya Gutkovskiy, Feb 22 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; series(x*(1+add(b(n/d),
          d=numtheory[divisors](n) minus {1, n})), x, 7)
        end:
    a:= n-> coeff(b(n), x, 6):
    seq(a(n), n=64..160);  # Alois P. Heinz, Feb 22 2021
  • Mathematica
    b[n_] := b[n] = Series[x*(1 + Sum[b[n/d],
         {d, Divisors[n]~Complement~{1, n}}]), {x, 0, 7}];
    a[n_] := Coefficient[b[n], x, 6];
    Table[a[n], {n, 64, 160}] (* Jean-François Alcover, Feb 28 2022, after Alois P. Heinz *)

Formula

Dirichlet g.f.: (zeta(s) - 1)^6.
a(n) = 15 * A000005(n) - 20 * A007425(n) + 15 * A007426(n) - 6 * A061200(n) + A034695(n) - 6 for n > 1.

A383657 Numerator of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s)^(3/2).

Original entry on oeis.org

1, 3, 3, 15, 3, 9, 3, 35, 15, 9, 3, 45, 3, 9, 9, 315, 3, 45, 3, 45, 9, 9, 3, 105, 15, 9, 35, 45, 3, 27, 3, 693, 9, 9, 9, 225, 3, 9, 9, 105, 3, 27, 3, 45, 45, 9, 3, 945, 15, 45, 9, 45, 3, 105, 9, 105, 9, 9, 3, 135, 3, 9, 45, 3003, 9, 27, 3, 45, 9, 27, 3, 525, 3
Offset: 1

Views

Author

Vaclav Kotesovec, May 04 2025

Keywords

Comments

In general, for m > 0, if Dirichlet g.f. is zeta(s)^m, then Sum_{j=1..n} a(j) ~ n*log(n)^(m-1)/Gamma(m) * (1 + (m-1)*(m*gamma - 1)/log(n)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the gamma function.

Crossrefs

Programs

  • Mathematica
    coeff=CoefficientList[Series[1/(1-x)^(3/2),{x,0,20}]//Normal,x];dptTerm[n_]:=Module[{flist=FactorInteger[n]},If[n==1,coeff[[1]],Numerator[Times@@(coeff[[flist[[All,2]]+1]])]]];Array[dptTerm,73] (* Shenghui Yang, May 04 2025 *)
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^(3/2))[n]), ", "))

Formula

Sum_{k=1..n} A383657(k)/A383658(k) ~ 2*n*sqrt(log(n)/Pi) * (1 - (1 - 3*gamma/2)/(2*log(n))), where gamma is the Euler-Mascheroni constant A001620.

A143354 Triangle read by rows, (A051731)^4 * A128407, 1<=k<=n.

Original entry on oeis.org

1, 4, -1, 4, 0, -1, 10, -4, 0, 0, 4, 0, 0, 0, -1, 16, -4, -4, 0, 0, 1, 4, 0, 0, 0, 0, 0, -1, 20, -10, 0, 0, 0, 0, 0, 0, 10, 0, -4, 0, 0, 0, 0, 0, 0, 16, -4, 0, 0, -4, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 40, -16, -10, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1
Offset: 1

Views

Author

Gary W. Adamson, Aug 10 2008

Keywords

Comments

Left border = A007426.
Right border = mu(n), A008683.
Row sums = A007425: (1, 3, 3, 6, 3, 9,...).

Examples

			First few rows of the triangle =
1;
4, -1;
4, 0, -1;
10, -4, 0, 0;
4, 0, 0, 0, 0, -1;
16, -4, -4, 0, 0, 1;
4, 0, 0, 0, 0, 0, -1;
10, -10, 0, 0, 0, 0, 0, 0;
...
		

Crossrefs

Formula

Triangle read by rows, (A051731)^4 * A128407, 1<=k<=n
Previous Showing 21-30 of 45 results. Next