A362549
Number of partitions of [n] whose blocks can be ordered such that the i-th block (except possibly the last) has at least i elements and no block j > i has an element smaller than the i-th smallest element of block i.
Original entry on oeis.org
1, 1, 2, 4, 9, 23, 64, 187, 566, 1777, 5820, 19944, 71343, 264719, 1011292, 3953381, 15756609, 63945484, 264384828, 1115246518, 4806957739, 21189601861, 95516470253, 439777682222, 2064164172616, 9853934668051, 47736608806520, 234235866539512, 1162618720397931
Offset: 0
a(0) = 1: (), the empty partition.
a(1) = 1: 1.
a(2) = 2: 12, 1|2.
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 9: 1234, 123|4, 124|3, 12|34, 134|2, 13|24, 14|23, 1|234, 1|23|4.
a(5) = 23: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|34|5, 1345|2, 134|25, 135|24, 13|245, 13|24|5, 145|23, 14|235, 14|23|5, 15|234, 1|2345, 1|234|5, 15|23|4, 1|235|4, 1|23|45.
a(6) = 64: 123456, 12345|6, 12346|5, 1234|56, 12356|4, ..., 1|2356|4, 1|235|46, 16|23|45, 1|236|45, 1|23|456.
-
b:= proc(n, t) option remember; `if`(n<=t, 1,
add(b(j, t+1)*binomial(n-t, j), j=0..n-t))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..30);
A091187
Triangle read by rows: T(n,k) is the number of ordered trees with n edges and k branches.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 6, 4, 1, 4, 12, 16, 9, 1, 5, 20, 40, 45, 21, 1, 6, 30, 80, 135, 126, 51, 1, 7, 42, 140, 315, 441, 357, 127, 1, 8, 56, 224, 630, 1176, 1428, 1016, 323, 1, 9, 72, 336, 1134, 2646, 4284, 4572, 2907, 835, 1, 10, 90, 480, 1890, 5292, 10710, 15240, 14535, 8350, 2188
Offset: 1
Triangle begins:
1;
1, 1;
1, 2, 2;
1, 3, 6, 4;
1, 4, 12, 16, 9;
1, 5, 20, 40, 45, 21;
1, 6, 30, 80, 135, 126, 51;
1, 7, 42, 140, 315, 441, 357, 127;
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1..150, flattened)
- J.-L. Baril, S. Kirgizov, The pure descent statistic on permutations, Preprint, 2016.
- J. Riordan, Enumeration of plane trees by branches and endpoints, J. Combinat. Theory, Ser A, 19, 214-222, 1975.
- Lin Yang and Shengliang Yang, Protected Branches in Ordered Trees, J. Math. Study (2023) Vol. 56, No. 1, 1-17.
-
M := n->sum(binomial(n+1,q)*binomial(n+1-q,q-1),q=0..ceil((n+1)/2))/(n+1): T := (n,k)->binomial(n-1,k-1)*M(k-1): seq(seq(T(n,k),k=1..n),n=1..13);
-
(* m = MotzkinNumber *) m[0] = 1; m[n_] := m[n] = m[n - 1] + Sum[m[k]*m[n - 2 - k], {k, 0, n - 2}]; t[n_, k_] := m[k - 1]*Binomial[n - 1, k - 1]; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2013 *)
A246118
T(n,k), for n,k >= 1, is the number of partitions of the set [n] into k blocks, where, if the blocks are arranged in order of their minimal element, the odd-indexed blocks are all singletons.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 11, 6, 1, 0, 1, 5, 26, 23, 9, 1, 0, 1, 6, 57, 72, 50, 12, 1, 0, 1, 7, 120, 201, 222, 86, 16, 1, 0, 1, 8, 247, 522, 867, 480, 150, 20, 1, 0, 1, 9, 502, 1291, 3123, 2307, 1080, 230, 25, 1, 0, 1, 10, 1013, 3084, 10660, 10044, 6627, 2000, 355, 30, 1
Offset: 1
Triangle begins
n\k| 1 2 3 4 5 6 7 8
1 | 1
2 | 0 1
3 | 0 1 1
4 | 0 1 2 1
5 | 0 1 3 4 1
6 | 0 1 4 11 6 1
7 | 0 1 5 26 23 9 1
8 | 0 1 6 57 72 50 12 1
...
Connection constants: Row 6 = (0, 1, 4, 11, 6, 1) so
x^6 = x^2 + 4*x^2*(x - 1) + 11*x^2*(x - 1)^2 + 6*x^2*(x - 1)^2*(x - 2) + x^2*(x - 1)^2*(x - 2)^2.
Row 5 = [0, 1, 3, 4, 1]. There are 9 set partitions of {1,2,3,4,5} of the type described in the Name section:
= = = = = = = = = = = = = = = = = = = = = = = = = = = = =
Number of Set partitions Count
blocks
= = = = = = = = = = = = = = = = = = = = = = = = = = = = =
2 {1}{2,3,4,5} 1
3 {1}{2,4,5}{3}, {1}{2,3,5}{4},
{1}{2,3,4}{5} 3
4 {1}{2,3}{4}{5}, {1}{2,4}{3}{5},
{1}{2,5}{3}{4}, {1}{2}{3}{4,5} 4
5 {1}{2}{3}{4}{5} 1
- Yue Cai and Margaret Readdy, Negative q-Stirling numbers, arXiv:1506.03249 [math.CO], 2015.
- Emrah Kiliç and Helmut Prodinger, Identities with Squares of Binomial Coefficients: an Elementary and Explicit Approach, Publications de l'Institut Mathématique (Beograd) (N.S.), Vol.99(113) (2016), 243-248. See p. 248.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Tech Report TR 99-05, 1999.
- E. Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 (2001) 33-51.
-
Flatten[Table[Table[Sum[StirlingS2[j,Floor[k/2]] * StirlingS2[n-j-1,Floor[(k-1)/2]],{j,0,n-1}],{k,1,n}],{n,1,12}]] (* Vaclav Kotesovec, Feb 09 2015 *)
A346050
G.f. A(x) satisfies: A(x) = x + x^2 + x^3 * A(x/(1 - x)) / (1 - x).
Original entry on oeis.org
0, 1, 1, 0, 1, 3, 6, 11, 23, 60, 179, 553, 1716, 5415, 17801, 61956, 228391, 882309, 3530322, 14531621, 61454091, 267479778, 1200680113, 5561767211, 26553471186, 130366882251, 656668581417, 3387887246292, 17886582294921, 96603394562849, 533645344137390, 3014295344076655
Offset: 0
-
nmax = 31; A[] = 0; Do[A[x] = x + x^2 + x^3 A[x/(1 - x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 0; a[1] = a[2] = 1; a[n_] := a[n] = Sum[Binomial[n - 3, k] a[k], {k, 0, n - 3}]; Table[a[n], {n, 0, 31}]
-
@CachedFunction
def a(n): # a = A346050
if (n<3): return (0,1,1)[n]
else: return sum(binomial(n-3,k)*a(k) for k in range(n-2))
[a(n) for n in range(51)] # G. C. Greubel, Nov 28 2022
A346051
G.f. A(x) satisfies: A(x) = 1 + x^2 + x^3 * A(x/(1 - x)) / (1 - x).
Original entry on oeis.org
1, 0, 1, 1, 1, 2, 5, 12, 28, 68, 181, 531, 1671, 5491, 18627, 65299, 237880, 903907, 3580619, 14729777, 62639952, 274442521, 1236730244, 5729809348, 27292248240, 133614280479, 671803041553, 3464970976743, 18309428363425, 99010800275743, 547462187824465, 3093329527120022
Offset: 0
-
function a(n)
if n lt 3 then return (1+(-1)^n)/2;
else return (&+[Binomial(n-3,j)*a(j): j in [0..n-3]]);
end if; return a;
end function;
[a(n): n in [0..35]]; // G. C. Greubel, Nov 30 2022
-
nmax = 31; A[] = 0; Do[A[x] = 1 + x^2 + x^3 A[x/(1 - x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[1] = 0; a[2] = 1; a[n_] := a[n] = Sum[Binomial[n - 3, k] a[k], {k, 0, n - 3}]; Table[a[n], {n, 0, 31}]
-
@CachedFunction
def a(n): # a = A346051
if (n<3): return (1, 0, 1)[n]
else: return sum(binomial(n-3, k)*a(k) for k in range(n-2))
[a(n) for n in range(51)] # G. C. Greubel, Nov 30 2022
A346052
G.f. A(x) satisfies: A(x) = 1 + x + x^3 * A(x/(1 - x)) / (1 - x).
Original entry on oeis.org
1, 1, 0, 1, 2, 3, 5, 11, 29, 80, 222, 630, 1881, 6004, 20420, 72979, 270659, 1035590, 4087205, 16675630, 70440641, 307933393, 1390117953, 6462787357, 30871458702, 151298796000, 760250325004, 3915477534861, 20662363081756, 111662169790416, 617482470676567, 3490973387652861
Offset: 0
-
function a(n) // a = A346052
if n lt 3 then return Floor((3-n)/2);
else return (&+[Binomial(n-3,j)*a(j): j in [0..n-3]]);
end if; return a;
end function;
[a(n): n in [0..35]]; // G. C. Greubel, Nov 30 2022
-
nmax = 31; A[] = 0; Do[A[x] = 1 + x + x^3 A[x/(1 - x)]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[2] = 0; a[n_] := a[n] = Sum[Binomial[n - 3, k] a[k], {k, 0, n - 3}]; Table[a[n], {n, 0, 31}]
-
@CachedFunction
def a(n): # a = A346052
if (n<3): return (1, 1, 0)[n]
else: return sum(binomial(n-3, k)*a(k) for k in range(n-2))
[a(n) for n in range(51)] # G. C. Greubel, Nov 30 2022
A351438
G.f. A(x) satisfies: A(x) = 1 + x + x^2 * A(x/(1 - x)) / (1 - x)^3.
Original entry on oeis.org
1, 1, 1, 4, 11, 29, 85, 281, 1003, 3764, 14811, 61327, 267153, 1219497, 5807473, 28763988, 147898511, 788330533, 4349414397, 24799271517, 145904796179, 884577652276, 5519858796807, 35415056743815, 233393746525705, 1578437838849645, 10945142365689985, 77752626344174676
Offset: 0
-
nmax = 27; A[] = 0; Do[A[x] = 1 + x + x^2 A[x/(1 - x)]/(1 - x)^3 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = a[1] = 1; a[n_] := a[n] = Sum[Binomial[n, k + 2] a[k], {k, 0, n - 2}]; Table[a[n], {n, 0, 27}]
A208891
Pascal's triangle matrix augmented with a right border of 1's.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 4, 1, 1, 1, 5, 10, 10, 5, 1, 1, 1, 6, 15, 20, 15, 6, 1, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1, 1, 10, 45, 120, 210, 252, 210, 120, 45
Offset: 0
First few rows of the triangle =
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 3, 3, 1, 1;
1, 4, 6, 4, 1, 1;
1, 5, 10, 10, 5, 1, 1;
1, 6, 15, 20, 15, 6, 1, 1;
1, 7, 21, 35, 35, 21, 7, 1, 1;
1, 8, 28, 56, 70, 56, 28, 8, 1, 1;
1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 1;
1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 1;
...
-
208891 := proc(n,k)
if n <0 or k<0 or k>n then
0;
elif n = k then
1 ;
else
binomial(n-1,k) ;
end if;
end proc:
seq(seq(A208891(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jul 19 2024
A256161
Triangle of allowable Stirling numbers of the second kind a(n,k).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 11, 6, 1, 1, 5, 26, 23, 9, 1, 1, 6, 57, 72, 50, 12, 1, 1, 7, 120, 201, 222, 86, 16, 1, 1, 8, 247, 522, 867, 480, 150, 20, 1, 1, 9, 502, 1291, 3123, 2307, 1080, 230, 25, 1, 1, 10, 1013, 3084, 10660, 10044, 6627, 2000, 355, 30, 1
Offset: 1
a(4,1) = 1 via 1111;
a(4,2) = 3 via 1211, 1121, 1112;
a(4,3) = 4 via 1213, 1231, 1233, 1123;
a(4,4) = 1 via 1234.
Triangle starts:
1;
1, 1;
1, 2, 1;
1, 3, 4, 1;
1, 4, 11, 6, 1;
...
-
a[, 1] = a[n, n_] = 1;
a[n_, k_] := a[n, k] = a[n-1, k-1] + Ceiling[k/2] a[n-1, k];
Table[a[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 15 2018 *)
A332398
Number of set partitions of [n] where all prime-indexed blocks are singletons.
Original entry on oeis.org
1, 1, 2, 4, 8, 17, 40, 105, 304, 958, 3255, 11851, 46096, 191648, 854551, 4101826, 21213282, 117747119, 695773801, 4332490151, 28149712546, 189300600481, 1309755334070, 9286984108299, 67327505784439, 498502290046850, 3769028024302567, 29115361551715499
Offset: 0
a(2) = 2: 12, 1|2.
a(3) = 4: 123, 12|3, 13|2, 1|2|3.
a(4) = 8: 1234, 123|4, 124|3, 12|3|4, 134|2, 13|2|4, 14|2|3, 1|2|3|4.
a(5) = 17: 12345, 1234|5, 1235|4, 123|4|5, 1245|3, 124|3|5, 125|3|4, 12|3|4|5, 1345|2, 134|2|5, 135|2|4, 13|2|4|5, 145|2|3, 14|2|3|5, 15|2|3|4, 1|2|3|45, 1|2|3|4|5.
-
b:= proc(n, m) option remember; `if`(n=0, 1, add(`if`(j<=m
and isprime(j), 0, b(n-1, max(j, m))), j=1..m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..32);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j, i+1)*
binomial(n-1, j-1), j=1..`if`(isprime(i+1), 1, n)))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..32);
-
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n-j, i+1] Binomial[n-1, j-1], {j, 1, If[PrimeQ[i+1], 1, n]}]];
a[n_] := b[n, 0];
a /@ Range[0, 32] (* Jean-François Alcover, May 07 2020, after 2nd Maple program *)
Previous
Showing 11-20 of 29 results.
Next
Comments