cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 100 results. Next

A254930 Fundamental positive solution x = x2(n) of the second class of the Pell equation x^2 - 2*y^2 = A001132(n), n >= 1 (primes congruent to 1 or 7 mod 8).

Original entry on oeis.org

5, 7, 11, 9, 13, 17, 13, 19, 23, 17, 15, 21, 25, 17, 23, 27, 35, 23, 29, 21, 41, 25, 31, 23, 35, 29, 39, 43, 37, 31, 27, 49, 53, 33, 31, 37, 47, 41, 55, 59, 31, 45, 39, 49, 37, 35, 61, 37, 35
Offset: 1

Views

Author

Wolfdieter Lang, Feb 12 2015

Keywords

Comments

The corresponding terms y = y2(n) are given in A254931(n).
There is only one fundamental solution for prime 2 (no second class exists), and this solution (x, y) has been included in (A002334(1), A002335(1)) = (2, 1).
The second class x sequence for the primes 1 (mod 8), which are given in A007519, is A254762, and for the primes 7 (mod 8), given in A007522, it is A254766.
The second class solutions give the second smallest positive integer solutions of this Pell equation.
For comments and the Nagell reference see A254760.

Examples

			n = 3: 11^2 - 2*7^2 = 23 = A001132(3) = A007522(2).
The first pairs of these second class solutions [x2(n), y2(n)] are (a star indicates primes congruent to 1 (mod 8)):
n  A001132(n)   a(n)  A254931(n)
1     7           5        3
2    17 *         7        4
3    23          11        7
4    31           9        5
5    41 *        13        8
6    47          17       11
7    71          13        7
8    73 *        19       12
9    89 *        17       10
10   97 *        15        8
11  103          21       13
12  113 *        25       16
13  127          17        9
14  137 *        23       14
15  151          27       17
16  167          35       23
17  191          23       13
18  193 *        29       18
19  199          21       11
20  223          41       27
...
		

Crossrefs

Programs

  • Mathematica
    Reap[For[p = 2, p < 1000, p = NextPrime[p], If[MatchQ[Mod[p, 8], 1|7], rp = Reduce[x > 0 && y > 0 && x^2 - 2 y^2 == p, {x, y}, Integers]; If[rp =!= False, xy = {x, y} /. {ToRules[rp /. C[1] -> 1]}; x2 = xy[[-1, 1]] // Simplify; Print[x2]; Sow[x2]]]]][[2, 1]] (* Jean-François Alcover, Oct 28 2019 *)

Formula

a(n)^2 - 2*A254931(n)^2 = A001132(n), and a(n) is the second largest (proper) positive integer solving this (generalized) Pell equation.
a(n) = 3*A002334(n+1) - 4*A002335(n+1), n >= 1.

A254931 Fundamental positive solution y = y2(n) of the second class of the Pell equation x^2 - 2*y^2 = A001132(n), n >= 1, (primes congruent to 1 or 7 mod 8).

Original entry on oeis.org

3, 4, 7, 5, 8, 11, 7, 12, 15, 10, 8, 13, 16, 9, 14, 17, 23, 13, 18, 11, 27, 14, 19, 12, 22, 17, 25, 28, 23, 18, 14, 32, 35, 19, 17, 22, 30, 25, 36, 39, 16, 28, 23, 31, 21, 19, 40, 20, 18, 38
Offset: 1

Views

Author

Wolfdieter Lang, Feb 12 2015

Keywords

Comments

The corresponding terms x = x2(n) are given in A254930(n).
The y2-sequence for the second class for the primes congruent to 1 (mod 8), which are given in A007519, is 2*A254763. For the primes congruent to 7 (mod 8), given in A007522, the y2-sequence is A254929.
For comments and the Nagell reference see A254760.

Examples

			a(4) = 2*7 - 3*3 = 5.
A254930(4)^2 - 2*a(4)^2 = 9^2 - 2*5^2 = 31 = A001132(4) = A007522(3).
See A254930 for the first pairs (x2(n), y2(n)).
		

Crossrefs

Programs

  • Mathematica
    Reap[For[p = 2, p < 1000, p = NextPrime[p], If[MatchQ[Mod[p, 8], 1|7], rp = Reduce[x > 0 && y > 0 && x^2 - 2 y^2 == p, {x, y}, Integers]; If[rp =!= False, xy = {x, y} /. {ToRules[rp /. C[1] -> 1]}; y2 = xy[[-1, 2]] // Simplify; Print[y2]; Sow[y2]]]]][[2, 1]] (* Jean-François Alcover, Oct 28 2019 *)

Formula

A254930(n)^2 - 2*a(n)^2 = A001132(n), and a(n) is the second largest (proper) positive integer satisfying this (generalized) Pell equation.
a(n) = 2*A002334(n+1) - 3*A002335(n+1), n >= 1.

A258149 Triangle of the absolute difference of the two legs (catheti) of primitive Pythagorean triangles.

Original entry on oeis.org

1, 0, 7, 7, 0, 17, 0, 1, 0, 31, 23, 0, 0, 0, 49, 0, 17, 0, 23, 0, 71, 47, 0, 7, 0, 41, 0, 97, 0, 41, 0, 7, 0, 0, 0, 127, 79, 0, 31, 0, 0, 0, 89, 0, 161, 0, 73, 0, 17, 0, 47, 0, 119, 0, 199, 119, 0, 0, 0, 1, 0, 73, 0, 0, 0, 241
Offset: 2

Views

Author

Wolfdieter Lang, Jun 10 2015

Keywords

Comments

For primitive Pythagorean triangles characterized by certain (n,m) pairs and references see A225949.
Here a(n,m) = 0 for non-primitive Pythagorean triangles, and for primitive Pythagorean triangles a(n,m) = abs(n^2 - m^2 - 2*n*m) = abs((n-m)^2 - 2*m^2).
The number of non-vanishing entries in row n is A055034(n).
D(n,m):= n^2 - m^2 - 2*n*m >= 0 if 1 <= m <= floor(n/(sqrt(2)+1)), and D(n,m) < 0 if n/(sqrt(2)+1)+1 <= m <= n-1, for n >= 2.
The Pell equation (n-m)^2 - 2*m^2 = +/- N is important here to find the representations of +N or -N in the triangle D(n,m). For instance, odd primes N have to be of the +1 (mod 8) (A007519) or -1 (mod 8) (A007522) form, that is, from A001132. See the Nagell reference, Theorem 110, p. 208 with Theorem 111, pp. 210-211. E.g., N = +7 appears for m = 1, 3, 9, 19, 53, ... (A077442) for n = 4, 8, 22, 46, 128, ... (2*A006452).
N = -7 appears for n = 3, 9, 19, 53, 111, ... (A077442) and m = 2, 4, 8, 22, 46, ... (2*A006452).
For the signed version 2*n*m - (n^2 - m^2) see A278717. - Wolfdieter Lang, Nov 30 2016

Examples

			The triangle a(n,m) begins:
n\m   1  2  3  4  5  6  7   8   9  10  11 ...
2:    1
3:    0  7
4:    7  0 17
5:    0  1  0 31
6:   23  0  0  0 49
7:    0 17  0 23  0 71
8:   47  0  7  0 41  0 97
9:    0 41  0  7  0  0  0 127
10:  79  0 31  0  0  0 89   0 161
11:   0 73  0 17  0 47  0 119   0 199
12: 119  0  0  0  1  0 73   0   0   0 241
...
a(2,1) = |1^2 - 2*1^2| = 1 for the primitive Pythagorean triangle (pPt) [3,4,5] with |3-4| = 1.
a(3,2) = |1^2 - 2*2^2| = 7 for the pPt [5,12,13] with |5 - 12| = 7.
a(4,1) = |3^2 - 2*1^2| = 7 for the pPt [15, 8, 17] with |15 - 8| = 7.
		

References

  • See also A225949.
  • T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, pp. 208, 210-211.

Crossrefs

Programs

  • Mathematica
    a[n_, m_] /; n > m >= 1 && CoprimeQ[n, m] && (-1)^(n+m) == -1 := Abs[n^2 - m^2 - 2*n*m]; a[, ] = 0; Table[a[n, m], {n, 2, 12}, {m, 1, n-1}] // Flatten (* Jean-François Alcover, Jun 16 2015, after given formula *)

Formula

a(n,m) = abs(n^2 - m^2 -2*n*m) = abs((n-m)^2 - 2*m^2) if n > m >= 1, gcd(n,m) = 1, and n and m are integers of opposite parity (i.e., (-1)^(n+m) = -1); otherwise a(n,m) = 0.

A269704 Numbers k such that prime(k) == 1 (mod 8).

Original entry on oeis.org

7, 13, 21, 24, 25, 30, 33, 44, 51, 53, 55, 60, 65, 68, 71, 79, 80, 84, 87, 88, 98, 104, 106, 108, 110, 113, 116, 122, 135, 136, 140, 148, 152, 158, 159, 162, 165, 169, 174, 176, 184, 189, 191, 196, 197, 199, 204, 209, 211, 216, 218, 223, 227, 234, 237, 245
Offset: 1

Views

Author

Vincenzo Librandi, Mar 04 2016

Keywords

Comments

The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021

Examples

			a(1) = 7 because prime(7) = 17 and 17 == 1 (mod 8).
		

Crossrefs

The associated primes are in A007519.
Cf. similar sequences listed in A269703.

Programs

  • Magma
    [n: n in [1..500] | NthPrime(n) mod 8 eq 1];
    
  • Maple
    Res:= NULL: count:= 0:
    p:= 2:
    for n from 2 while count < 100 do
      p:= nextprime(p);
      if p mod 8 = 1 then count:= count+1; Res:= Res, n fi
    od:
    Res; # Robert Israel, May 06 2019
  • Mathematica
    Select[Range[300], Mod[Prime[#], 8] == 1 &]
  • PARI
    lista(nn) = for(n=1, nn, if(Mod(prime(n),8)==1, print1(n, ", "))); \\ Altug Alkan, Mar 04 2016

A337145 a(n) is the determinant of the 2 X 2 matrix whose entries (when read by rows) are the n-th primes congruent to 1, 3, 5, 7 mod 8 respectively.

Original entry on oeis.org

104, 800, 1712, 2592, 3760, 4840, 5728, 12848, 15664, 18424, 20888, 23520, 28232, 28560, 25320, 30280, 37248, 50520, 43680, 33664, 61560, 73920, 70544, 57696, 38696, 27408, 79280, 63392, 107328, 109536, 162608, 172296, 187352, 197040, 248064, 228320, 215912, 229152, 255480, 231304, 286408, 256320
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 27 2021

Keywords

Comments

The first negative term is a(20750) = -58207896.
All terms are divisible by 8.

Examples

			The first primes == 1, 3, 5, 7 (mod 8) are 17, 3, 5, 7 respectively, so a(1) = 17*7 - 3*5 = 104.
The second primes == 1, 3, 5, 7 (mod 8) are 41, 11, 13, 23 respectively, so a(2) = 41*23 - 11*13 = 800.
The third primes == 1, 3, 5, 7 (mod 8) are 73, 19, 29, 31 respectively, so a(3) = 73*31 - 19*29 = 1712.
		

Crossrefs

Programs

  • Maple
    R:= NULL:
    L:= [-7, -5, -3, -1]:
    found:= false:
    for k from 1 to 100 do
      for i from 1 to 4 do
       for x from L[i]+8 by 8 do until isprime(x);
       L[i]:= x;
      od;
      v:= L[1]*L[4]-L[2]*L[3];
      R:= R,v;
    od:
    R;

A020671 Numbers of form x^2 + 8 y^2.

Original entry on oeis.org

0, 1, 4, 8, 9, 12, 16, 17, 24, 25, 32, 33, 36, 41, 44, 48, 49, 57, 64, 68, 72, 73, 76, 81, 88, 89, 96, 97, 100, 108, 113, 121, 128, 129, 132, 136, 137, 144, 152, 153, 164, 169, 172, 176, 177, 192, 193, 196, 200, 201, 204, 209, 216, 225, 228, 233, 236, 241, 249, 256, 257
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A007519.

Programs

  • Magma
    [n: n in [0..230] | NormEquation(8, n) eq true]; // Vincenzo Librandi, Aug 31 2016
  • Mathematica
    lim=260; k=8; Union@Flatten@Table[x^2 + k y^2, {y, 0, Sqrt[lim/k]}, {x, 0, Sqrt[lim-k y^2]}] (* Vincenzo Librandi, Aug 31 2016 *)

A125039 Primes of the form 8k+1 generated recursively. Initial prime is 17. General term is a(n)=Min {p is prime; p divides (2Q)^4 + 1}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

17, 1336337, 4261668267710686591310687815697, 41, 4390937134822286389262585915435960722186022220433, 241, 1553, 243537789182873, 97, 27673, 4289, 457, 137201, 73, 337, 569891669978849, 617, 1697, 65089, 1609, 761
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

All prime divisors of (2Q)^4 + 1 are congruent to 1 modulo 8.

Examples

			a(3) = 4261668267710686591310687815697 is the smallest prime divisor of (2Q)^4 + 1 = 4261668267710686591310687815697, where Q = 17 * 1336337.
		

References

  • G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag, NY, (1998), p. 271.

Crossrefs

Extensions

More terms from Sean A. Irvine, Apr 09 2015

A139505 Primes of the form x^2 + 25x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

151, 163, 307, 397, 409, 541, 547, 601, 673, 811, 823, 859, 967, 997, 1153, 1231, 1237, 1327, 1567, 1669, 1741, 1879, 2083, 2143, 2281, 2293, 2557, 2677, 2707, 2833, 2971, 3037, 3259, 3313, 3433, 3877, 4003, 4129, 4153, 4603, 4639, 4861, 4957, 5101, 5227
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 25; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)
    With[{nn=80},Select[Union[#[[1]]^2+25#[[1]]#[[2]]+#[[2]]^2&/@Tuples[ Range[ 0,nn],2]],PrimeQ[#]&&#Harvey P. Dale, Feb 10 2020 *)

A210630 Decimal expansion of Product_{primes p == 1 (mod 8)} p*(p-8)/(p-4)^2.

Original entry on oeis.org

8, 8, 3, 0, 7, 1, 0, 0, 4, 7, 4, 3, 9, 4, 6, 6, 7, 1, 4, 1, 7, 8, 3, 4, 2, 9, 9, 0, 0, 3, 1, 0, 8, 5, 3, 4, 6, 7, 6, 8, 8, 8, 8, 3, 4, 8, 8, 0, 9, 7, 3, 4, 7, 0, 7, 1, 9, 2, 9, 5, 1, 5, 9, 3, 9, 5, 2, 1, 1, 9, 4, 6, 9, 9, 0, 6, 5, 6, 5, 9, 6, 8, 8, 5, 7, 9, 9, 3, 8, 3, 2, 8, 6, 0, 3, 7, 9, 1, 6, 4, 6, 3, 5, 8, 5, 2
Offset: 0

Views

Author

R. J. Mathar, Mar 25 2012

Keywords

Comments

Equals the product_{s>=2} of 1/zeta_(8,1)(s)^gamma(s), where gamma(s) = 16, 128, 888, 6144, 42256, 293912,... is an Euler transformation of the associated polynomial (1/x)(1/x-8)/(1/x-4)^2, and where the zeta_(m,n)(s) are the zeta prime modulo functions defined in section 3.3 of arXiv:1008.2547.
Note that Product_{k>=1} (8*k-7) * (8*k+1) / (8*k-3)^2 = Pi * 2^(9/2) * Gamma(1/4)^2 / Gamma(1/8)^4 = 0.290040073098462288674... - Vaclav Kotesovec, May 13 2020

Examples

			0.88307100474394667141783429900310853467688883488097347...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 121;
    f[p_] := p*(p - 8)/(p - 4)^2;
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*(P[8, 1, m] - 1/17^m); sump = sump + difp; m++];
    RealDigits[Chop[N[f[17]*Exp[sump], digits]], 10, digits - 1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)

Extensions

More digits from Ettahri article added by Vaclav Kotesovec, May 12 2020
More digits from Vaclav Kotesovec, Jan 16 2021

A228227 Primes congruent to {7, 11} mod 16.

Original entry on oeis.org

7, 11, 23, 43, 59, 71, 103, 107, 139, 151, 167, 199, 251, 263, 283, 311, 331, 347, 359, 379, 439, 443, 487, 491, 503, 523, 571, 587, 599, 619, 631, 647, 683, 727, 743, 811, 823, 827, 839, 859, 887, 907, 919, 967, 971, 983, 1019, 1031, 1051, 1063, 1163, 1223
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 16 2013

Keywords

Comments

Union of A141194 and A141195.
Let p be a prime number and let E(p) denote the elliptic curve y^2 = x^3 + p*x. If p is in the sequence, then the rank of E(p) is 0. Therefore A060953(a(n)) = 0.

References

  • J. H. Silverman, The arithmetic of elliptic curves, Springer, NY, 1986, p. 311.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1223) | p mod 16 in {7, 11}];
  • Mathematica
    Select[Prime@Range[200], MemberQ[{7, 11}, Mod[#, 16]] &]
Previous Showing 61-70 of 100 results. Next