cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 100 results. Next

A228228 Primes congruent to {3, 5, 13, 15} mod 16.

Original entry on oeis.org

3, 5, 13, 19, 29, 31, 37, 47, 53, 61, 67, 79, 83, 101, 109, 127, 131, 149, 157, 163, 173, 179, 181, 191, 197, 211, 223, 227, 229, 239, 269, 271, 277, 293, 307, 317, 349, 367, 373, 383, 389, 397, 419, 421, 431, 461, 463, 467, 479, 499, 509, 541, 547, 557, 563
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 16 2013

Keywords

Comments

Union of A091968, A127589, A141196, and A127576.
Let p be a prime number and let E(p) denote the elliptic curve y^2 = x^3 + p*x. If p is in the sequence, then the rank of E(p) is 0 or 1. Therefore, A060953(a(n)) must be one of only two values: 0 or 1.

References

  • J. H. Silverman, The arithmetic of elliptic curves, Springer, NY, 1986, p. 311.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(563) | p mod 16 in {3, 5, 13, 15}];
  • Mathematica
    Select[Prime@Range[103], MemberQ[{3, 5, 13, 15}, Mod[#, 16]] &]

A263770 Smallest prime q such that (prime(n)^2 + q*prime(n))/(prime(n) + 1) is an integer.

Original entry on oeis.org

7, 5, 7, 17, 13, 29, 19, 41, 73, 31, 97, 191, 43, 89, 97, 109, 61, 311, 137, 73, 149, 241, 337, 181, 197, 103, 313, 109, 331, 229, 257, 397, 139, 281, 151, 457, 317, 821, 337, 349, 181, 547, 193, 389, 199, 401, 1061, 449, 229, 461, 937, 241, 727, 757, 1033, 1321, 271, 1361, 557
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 25 2015

Keywords

Comments

Least prime q such that q == 1 (mod prime(n) + 1).

Crossrefs

Programs

  • Mathematica
    Table[q = 2; While[! IntegerQ[(Prime[n]^2 + q Prime@ n)/(Prime@ n + 1)], q = NextPrime@ q]; q, {n, 59}] (* Michael De Vlieger, Oct 26 2015 *)
  • PARI
    a(n) = {p = prime(n); q = 2; while ((p^2 + p*q) % (p + 1), q = nextprime(q+1)); q;} \\ Michel Marcus, Oct 26 2015

Formula

5 is in this sequence because (prime(2)^2 + 5*prime(2))/(prime(2) + 1) = 6 and 5 is prime.

A269424 Record (maximal) gaps between primes of the form 8k + 1.

Original entry on oeis.org

24, 32, 56, 64, 88, 112, 120, 136, 160, 216, 232, 240, 264, 304, 384, 480, 488, 528, 544, 576, 624, 640, 720, 760, 816, 888, 960, 1032, 1064, 1200, 1296, 1320, 1432, 1464, 1520, 1560, 1608, 1832, 1848
Offset: 1

Views

Author

Alexei Kourbatov, Feb 25 2016

Keywords

Comments

Dirichlet's theorem on arithmetic progressions suggests that average gaps between primes of the form 8k + 1 below x are about phi(8)*log(x). This sequence shows that the record gap ending at p grows almost as fast as phi(8)*log^2(p). Here phi(n) is A000010, Euler's totient function; phi(8)=4.
Conjecture: a(n) < phi(8)*log^2(A269426(n)) almost always.
A269425 lists the primes preceding the maximal gaps.
A269426 lists the corresponding primes at the end of the maximal gaps.

Examples

			The first two primes of the form 8k + 1 are 17 and 41, so a(1)=41-17=24. The next prime of this form is 73 and the gap 73-41=32 is a new record, so a(2)=32.
		

Crossrefs

Programs

  • Mathematica
    re = 0; s = 17; Reap[For[p = 41, p < 10^8, p = NextPrime[p], If[Mod[p, 8] == 1, g = p - s; If[g > re, re = g; Print[g]; Sow[g]]; s = p]]][[2, 1]] (* Jean-François Alcover, Oct 17 2016, adapted from PARI *)
  • PARI
    re=0; s=17; forprime(p=41, 1e8, if(p%8!=1, next); g=p-s; if(g>re, re=g; print1(g", ")); s=p)

A269425 Primes 8k + 1 preceding the maximal gaps in A269424.

Original entry on oeis.org

17, 41, 137, 457, 673, 2161, 5953, 8377, 10009, 22481, 37657, 73121, 79889, 220897, 351529, 1879121, 2321393, 4259113, 6394657, 8211977, 9618457, 11282017, 36087113, 59502217, 72495233, 236885513, 556952881, 809097481, 830449097, 888023449, 2420630497, 3845315977, 13243532017, 17279668529, 29704277129, 49624608961, 59974490209, 107046775289, 158191299481
Offset: 1

Views

Author

Alexei Kourbatov, Feb 25 2016

Keywords

Comments

Subsequence of A007519.
A269424 lists the corresponding record gap sizes. See more comments there.

Examples

			The first two primes of the form 8k + 1 are 17 and 41, so a(1)=17. The next prime of this form is 73 and the gap 73-41=32 is a new record, so a(2)=41.
		

Crossrefs

Programs

  • PARI
    re=0; s=17; forprime(p=41, 1e8, if(p%8!=1, next); g=p-s; if(g>re, re=g; print1(s", ")); s=p)

A269426 Primes 8k + 1 at the end of the maximal gaps in A269424.

Original entry on oeis.org

41, 73, 193, 521, 761, 2273, 6073, 8513, 10169, 22697, 37889, 73361, 80153, 221201, 351913, 1879601, 2321881, 4259641, 6395201, 8212553, 9619081, 11282657, 36087833, 59502977, 72496049, 236886401, 556953841, 809098513, 830450161, 888024649, 2420631793, 3845317297, 13243533449, 17279669993, 29704278649, 49624610521, 59974491817, 107046777121, 158191301329
Offset: 1

Views

Author

Alexei Kourbatov, Feb 25 2016

Keywords

Comments

Subsequence of A007519.
A269424 lists the corresponding record gap sizes. See more comments there.

Examples

			The first two primes of the form 8k + 1 are 17 and 41, so a(1)=41. The next prime of this form is 73 and the gap 73-41=32 is a new record, so a(2)=73.
		

Crossrefs

Programs

  • PARI
    re=0; s=17; forprime(p=41, 1e8, if(p%8!=1, next); g=p-s; if(g>re, re=g; print1(p", ")); s=p)

A022761 n-th 8k+1 prime plus n-th 8k+7 prime.

Original entry on oeis.org

24, 64, 104, 136, 168, 192, 240, 320, 384, 408, 448, 480, 536, 576, 616, 672, 720, 792, 816, 840, 952, 1008, 1040, 1072, 1088, 1120, 1240, 1280, 1392, 1416, 1528, 1584, 1624, 1680, 1760, 1792, 1840, 1896, 1944, 1968, 2064, 2112, 2144, 2224
Offset: 1

Views

Author

Keywords

Examples

			The first four primes of the form 8k - 1 are 7, 23, 31, 47. The first four primes of the form 8k + 1 are 17, 41, 73, 89.
Thus a(1) = 7 + 17  = 24.
a(2) = 23 + 41 = 64.
a(3) = 31 + 73 = 104.
a(4) = 47 + 89 = 136.
		

Crossrefs

Programs

  • Mathematica
    thresh = 100; A007522 = Select[8Range[thresh] - 1, PrimeQ]; A007519 = Select[8Range[thresh] + 1, PrimeQ]; preExh = Min[Length[A007522], Length[A007519]]; Take[A007522, preExh] + Take[A007519, preExh]
    Module[{nn=300,p1,p7,len},p1=Select[Prime[Range[nn]],IntegerQ[(#-1)/8]&];p7=Select[Prime[Range[nn]],IntegerQ[(#-7)/8]&];len=Min[ Length[ p1],Length[ p7]];Total/@Thread[{Take[p1,len],Take[p7,len]}]] (* Harvey P. Dale, May 26 2020 *)

A121243 Primes of the form 4*x^2 + 4*x*y + 9*y^2.

Original entry on oeis.org

17, 73, 89, 97, 193, 233, 241, 281, 401, 433, 449, 601, 617, 641, 673, 769, 929, 937, 977, 1009, 1033, 1049, 1097, 1193, 1289, 1297, 1361, 1409, 1433, 1481, 1489, 1609, 1697, 1721, 1753, 1801, 1873, 1913
Offset: 1

Views

Author

Steven Finch, Aug 22 2006

Keywords

Comments

This sequence is complementary to A105389 in the sense that the two sequences are disjoint and their union constitutes all primes p satisfying Mod[p,8]=1.
Primes satisfying Mod[p,8]=1 are of form x^2+8y^2 (A007519), with the sequence above as odd y, while A105389 is even y. This can be seen by expressing the former as (2x+y)^2+8y^2 (where y can only be odd), while the latter is u^2+8(2v)^2. [From Tito Piezas III, Jan 01 2009]

Examples

			17 = 4*1^2 + 4*1*1 + 9*1^2, 73 = 4*1^2 + 4*1*(-3) + 9*(-3)^2
		

Crossrefs

Cf. A105389.

Programs

  • Mathematica
    QuadPrimes2[4, -4, 9, 10000] (* see A106856 *)
    (* Second program: *)
    max = 2000; Table[yy = {y, Floor[-2x/9 - 1/9 Sqrt[9max - 32x^2]], Ceiling[-2x/9 + 1/9 Sqrt[9max - 32x^2]]}; Table[4x^2 + 4 x y + 9y^2, yy // Evaluate], {x, 0, Ceiling[3Sqrt[max]/(4Sqrt[2])]}] // Flatten // Union // Select[#, # <= max && PrimeQ[#]&]& // Quiet (* Jean-François Alcover, Oct 08 2018 *)

A139493 Primes of the form x^2 + 9x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

11, 23, 37, 53, 67, 71, 113, 137, 163, 179, 191, 317, 331, 379, 389, 401, 421, 443, 449, 463, 487, 499, 599, 617, 631, 641, 653, 683, 709, 751, 757, 823, 863, 883, 907, 911, 947, 977, 991, 1061, 1087, 1093, 1103, 1171, 1213, 1303, 1367, 1373, 1409, 1423
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

This is a member of the family of sequences of primes of the forms x^2 + kxy + y^2.
See for k=1 A007645 = x^2+3y^2, k=2 squares no primes, k=3 A038872, k=4 A068228 = x^2+9y^2, k=5 A139492, k=6 A007519 = x^2+8y^2, k=7 A033212 = x^2+15y^2, k=8 A107152 = x^2+45y^2, k=9 A139493, k=10 A107008 = x^2+24y^2, k=11 A139494, k=12 A139495, k=13 A139496, k=14* = 10 A107008 = x^2+24y^2, k=15 A139497, k=16 A033215 = x^2+21y^2, k=17 A139498, k=18 A107145 = x^2+40y^2, k=19 A139499, k=20 A139500, k=21 A139501, k=22 A139502, k=23 A139503, k=24 A139504, k=25 A139505, k=26,A139506, k=27 A139507, k=28 A139508, k=29 A139509, k=30 A139510, k=31 A139511, k=32 A139512

Crossrefs

Programs

  • Mathematica
    a = {}; w = 9; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139495 Primes of the form x^2 + 12x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

29, 109, 149, 281, 389, 401, 421, 449, 541, 569, 641, 701, 709, 809, 821, 1009, 1061, 1129, 1201, 1229, 1289, 1381, 1409, 1429, 1481, 1549, 1621, 1709, 1789, 1801, 1901, 2069, 2081, 2129, 2221, 2269, 2381, 2389, 2521, 2549, 2689, 2741, 2801, 2909, 2969
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 12; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)
    With[{nn=50},Take[Union[Select[#[[1]]^2+12#[[1]]#[[2]]+#[[2]]^2&/@ Tuples[ Range[ nn],2],PrimeQ]],nn]] (* Harvey P. Dale, Dec 18 2015 *)

A139496 Primes of the form x^2 + 13x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

31, 181, 199, 229, 331, 379, 421, 499, 619, 631, 661, 691, 709, 751, 829, 859, 991, 1021, 1039, 1171, 1279, 1291, 1321, 1489, 1549, 1609, 1621, 1699, 1741, 1831, 1879, 1951, 2011, 2029, 2161, 2179, 2269, 2281, 2311, 2341, 2539, 2671, 2689, 2731, 2971
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 13; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)
Previous Showing 71-80 of 100 results. Next