cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A218329 Even 9-gonal (nonagonal) pyramidal numbers.

Original entry on oeis.org

10, 34, 80, 266, 420, 624, 1210, 1606, 2080, 3290, 4040, 4896, 6954, 8170, 9520, 12650, 14444, 16400, 20826, 23310, 25984, 31930, 35216, 38720, 46410, 50610, 55056, 64714, 69940, 75440, 87290, 93654, 100320, 114586, 122200, 130144, 147050, 156026, 165360
Offset: 1

Views

Author

Ant King, Oct 28 2012

Keywords

Examples

			The sequence of 9-gonal (nonagonal) pyramidal numbers A007584 begins 1, 10, 34, 80, 155, 266, 420, 624, 885, 1210,.... As the third even term is 80, then a(3) = 80.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{10,34,80,266,420,624,1210,1606,2080,3290},39]

Formula

a(n) = a(n-1) + 3*a(n-3) - 3*a(n-4) - 3*a(n-6) + 3*a(n-7) + a(n-9) - a(n-10).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) + 448.
a(n) = phi(n)*(phi(n)+9)*(7*phi(n)-36)/4374, where phi(n) = 3 + 12*n - 3*cos(2*n*Pi/3) + sqrt(3)*sin(2*n*Pi/3).
G.f.: 2*x*(5+12*x+23*x^2+78*x^3+41*x^4+33*x^5+29*x^6+3*x^7)/((1-x)^4*(1+x+x^2)^3).

A255687 a(n) = n*(n + 1)*(7*n + 11)/6.

Original entry on oeis.org

0, 6, 25, 64, 130, 230, 371, 560, 804, 1110, 1485, 1936, 2470, 3094, 3815, 4640, 5576, 6630, 7809, 9120, 10570, 12166, 13915, 15824, 17900, 20150, 22581, 25200, 28014, 31030, 34255, 37696, 41360, 45254, 49385, 53760, 58386, 63270, 68419, 73840, 79540, 85526
Offset: 0

Views

Author

Luce ETIENNE, Mar 02 2015

Keywords

Comments

This sequence gives the number of triangles of all sizes in (3*n^2+2*n)-polyiamonds in a pentagonal or heptagonal configuration.
Also sum of 2*n*(n+1)*(n+2)/3 triangles oriented in one direction and n*(n+1)^2/2 oriented in the opposite direction.

Crossrefs

First bisection of A212977.
Partial sums of A179986.

Programs

  • Magma
    [n*(n+1)*(7*n+11)/6: n in [0..50]]; // Bruno Berselli, Mar 02 2015
    
  • Maple
    A255687:=n->n*(n+1)*(7*n+11)/6: seq(A255687(n), n=0..50); # Wesley Ivan Hurt, Mar 03 2015
  • Mathematica
    Table[n (n + 1) (7 n + 11)/6, {n, 0, 50}] (* Bruno Berselli, Mar 02 2015 *)
    LinearRecurrence[{4,-6,4,-1},{0,6,25,64},50] (* Harvey P. Dale, Jul 17 2015 *)
  • PARI
    vector(50, n, n--; n*(n+1)*(7*n+11)/6)
    
  • PARI
    concat(0, Vec(x*(x+6)/(x-1)^4 + O(x^100))) \\ Colin Barker, Mar 02 2015
    
  • Sage
    [n*(n+1)*(7*n+11)/6 for n in (0..50)] # Bruno Berselli, Mar 02 2015

Formula

a(n) = (1/2)*(Sum_{j=0..n} (n+1-j)*(3*n-j) + Sum_{j=0..n-1} (n-j)*(3*n+1-3*j)).
From Colin Barker, Mar 02 2015: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(x + 6)/(x - 1)^4. (End)
a(n) = -A007584(-n-1). - Bruno Berselli, Mar 02 2015
From Elmo R. Oliveira, Aug 18 2025: (Start)
E.g.f.: exp(x)*x*(36 + 39*x + 7*x^2)/6.
a(n) = A212977(2*n). (End)

A266086 Alternating sum of 9-gonal (or nonagonal) numbers.

Original entry on oeis.org

0, -1, 8, -16, 30, -45, 66, -88, 116, -145, 180, -216, 258, -301, 350, -400, 456, -513, 576, -640, 710, -781, 858, -936, 1020, -1105, 1196, -1288, 1386, -1485, 1590, -1696, 1808, -1921, 2040, -2160, 2286, -2413, 2546, -2680, 2820, -2961, 3108, -3256, 3410
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2015

Keywords

Crossrefs

Programs

  • Magma
    [(14*(-1)^n*n^2 + 4*(-1)^n*n - 5*(-1)^n + 5)/8: n in [0..50]]; // Vincenzo Librandi, Dec 21 2015
    
  • Mathematica
    Table[((14 n^2 + 4 n - 5) (-1)^n + 5)/8, {n, 0, 44}]
    CoefficientList[Series[(x - 6 x^2)/(x^4 + 2 x^3 - 2 x - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(-x*(1-6*x)/((1-x)*(1+x)^3))) \\ Altug Alkan, Dec 21 2015

Formula

G.f.: -x*(1 - 6*x)/((1 - x)*(1 + x)^3).
a(n) = ((14*n^2 + 4*n - 5)*(-1)^n + 5)/8.
a(n) = Sum_{k = 0..n} (-1)^k*A001106(k).
Lim_{n -> infinity} a(n + 1)/a(n) = -1.

A349147 Triangle T(n,m) read by rows: the sum of runs of all sequences arranging n objects of one type and m objects of another type.

Original entry on oeis.org

1, 1, 4, 1, 7, 18, 1, 10, 34, 80, 1, 13, 55, 155, 350, 1, 16, 81, 266, 686, 1512, 1, 19, 112, 420, 1218, 2982, 6468, 1, 22, 148, 624, 2010, 5412, 12804, 27456, 1, 25, 189, 885, 3135, 9207, 23595, 54483, 115830, 1, 28, 235, 1210, 4675, 14872, 41041, 101530, 230230, 486200, 1, 31
Offset: 0

Views

Author

R. J. Mathar, Nov 08 2021

Keywords

Examples

			The triangle starts
  1,
  1,  4,
  1,  7,  18,
  1, 10,  34,   80,
  1, 13,  55,  155,  350,
  1, 16,  81,  266,  686,  1512,
  1, 19, 112,  420, 1218,  2982,  6468,
  1, 22, 148,  624, 2010,  5412, 12804,  27456,
  1, 25, 189,  885, 3135,  9207, 23595,  54483, 115830,
  1, 28, 235, 1210, 4675, 14872, 41041, 101530, 230230, 486200,
  1, 31, 286, 1606, 6721, 23023, 68068, 179608, 432718, 967538, 2032316
For n=m=1 the sequences are ab (2 runs) and ba (2 runs), so T(1,1)=2+2=4.
For n=1, m=2 the sequences are aab (2 runs), aba (3 runs), baa (2 runs), so T(1,2)=2+3+2=7.
For n=m=2 the sequences are aabb (2 runs), abab (4 runs), abba (3 runs), baab (3 runs), baba (4 runs), bbaa (2 runs), so T(2,2) = 2+4+3+3+4+2=18.
		

Crossrefs

Cf. A016777 (row/col 1), A000566 (row/col 2), A007584 (row/col 3), A051798 (row/col 4).
Diagonal gives A037965(n+1).

Formula

T(n,m) = T(m,n).
Sum_{m=0..n} T(n,m) = A000917(n-1) + A000984(n) = 1, 5, 26, 125, 574, ... - R. J. Mathar, Nov 09 2021
T(n,m) = binomial(n+m,n)*(2*n*m+n+m)/(n+m) for n+m >= 1.

A269440 Alternating sum of 9-gonal (or decagonal) pyramidal numbers.

Original entry on oeis.org

0, -1, 9, -25, 55, -100, 166, -254, 370, -515, 695, -911, 1169, -1470, 1820, -2220, 2676, -3189, 3765, -4405, 5115, -5896, 6754, -7690, 8710, -9815, 11011, -12299, 13685, -15170, 16760, -18456, 20264, -22185, 24225, -26385, 28671, -31084, 33630, -36310, 39130
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(-1)^n (2 n - 1) ((14 n^2 + 34 n + 15)/48) + 5/16, {n, 0, 40}]
    LinearRecurrence[{-3, -2, 2, 3, 1}, {0, -1, 9, -25, 55}, 41]

Formula

G.f.: x*(1 - 6*x)/((x - 1)*(x + 1)^4).
a(n) = (-1)^n*(2*n - 1)*(14*n^2 + 34*n + 15)/48 + 5/16.
a(n) = Sum_{k = 0..n} (-1)^k*A007584(k).
Previous Showing 11-15 of 15 results.