A218329
Even 9-gonal (nonagonal) pyramidal numbers.
Original entry on oeis.org
10, 34, 80, 266, 420, 624, 1210, 1606, 2080, 3290, 4040, 4896, 6954, 8170, 9520, 12650, 14444, 16400, 20826, 23310, 25984, 31930, 35216, 38720, 46410, 50610, 55056, 64714, 69940, 75440, 87290, 93654, 100320, 114586, 122200, 130144, 147050, 156026, 165360
Offset: 1
The sequence of 9-gonal (nonagonal) pyramidal numbers A007584 begins 1, 10, 34, 80, 155, 266, 420, 624, 885, 1210,.... As the third even term is 80, then a(3) = 80.
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 3, -3, 0, -3, 3, 0, 1, -1).
-
LinearRecurrence[{1,0,3,-3,0,-3,3,0,1,-1},{10,34,80,266,420,624,1210,1606,2080,3290},39]
A255687
a(n) = n*(n + 1)*(7*n + 11)/6.
Original entry on oeis.org
0, 6, 25, 64, 130, 230, 371, 560, 804, 1110, 1485, 1936, 2470, 3094, 3815, 4640, 5576, 6630, 7809, 9120, 10570, 12166, 13915, 15824, 17900, 20150, 22581, 25200, 28014, 31030, 34255, 37696, 41360, 45254, 49385, 53760, 58386, 63270, 68419, 73840, 79540, 85526
Offset: 0
-
[n*(n+1)*(7*n+11)/6: n in [0..50]]; // Bruno Berselli, Mar 02 2015
-
A255687:=n->n*(n+1)*(7*n+11)/6: seq(A255687(n), n=0..50); # Wesley Ivan Hurt, Mar 03 2015
-
Table[n (n + 1) (7 n + 11)/6, {n, 0, 50}] (* Bruno Berselli, Mar 02 2015 *)
LinearRecurrence[{4,-6,4,-1},{0,6,25,64},50] (* Harvey P. Dale, Jul 17 2015 *)
-
vector(50, n, n--; n*(n+1)*(7*n+11)/6)
-
concat(0, Vec(x*(x+6)/(x-1)^4 + O(x^100))) \\ Colin Barker, Mar 02 2015
-
[n*(n+1)*(7*n+11)/6 for n in (0..50)] # Bruno Berselli, Mar 02 2015
A266086
Alternating sum of 9-gonal (or nonagonal) numbers.
Original entry on oeis.org
0, -1, 8, -16, 30, -45, 66, -88, 116, -145, 180, -216, 258, -301, 350, -400, 456, -513, 576, -640, 710, -781, 858, -936, 1020, -1105, 1196, -1288, 1386, -1485, 1590, -1696, 1808, -1921, 2040, -2160, 2286, -2413, 2546, -2680, 2820, -2961, 3108, -3256, 3410
Offset: 0
-
[(14*(-1)^n*n^2 + 4*(-1)^n*n - 5*(-1)^n + 5)/8: n in [0..50]]; // Vincenzo Librandi, Dec 21 2015
-
Table[((14 n^2 + 4 n - 5) (-1)^n + 5)/8, {n, 0, 44}]
CoefficientList[Series[(x - 6 x^2)/(x^4 + 2 x^3 - 2 x - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Dec 21 2015 *)
-
x='x+O('x^100); concat(0, Vec(-x*(1-6*x)/((1-x)*(1+x)^3))) \\ Altug Alkan, Dec 21 2015
A349147
Triangle T(n,m) read by rows: the sum of runs of all sequences arranging n objects of one type and m objects of another type.
Original entry on oeis.org
1, 1, 4, 1, 7, 18, 1, 10, 34, 80, 1, 13, 55, 155, 350, 1, 16, 81, 266, 686, 1512, 1, 19, 112, 420, 1218, 2982, 6468, 1, 22, 148, 624, 2010, 5412, 12804, 27456, 1, 25, 189, 885, 3135, 9207, 23595, 54483, 115830, 1, 28, 235, 1210, 4675, 14872, 41041, 101530, 230230, 486200, 1, 31
Offset: 0
The triangle starts
1,
1, 4,
1, 7, 18,
1, 10, 34, 80,
1, 13, 55, 155, 350,
1, 16, 81, 266, 686, 1512,
1, 19, 112, 420, 1218, 2982, 6468,
1, 22, 148, 624, 2010, 5412, 12804, 27456,
1, 25, 189, 885, 3135, 9207, 23595, 54483, 115830,
1, 28, 235, 1210, 4675, 14872, 41041, 101530, 230230, 486200,
1, 31, 286, 1606, 6721, 23023, 68068, 179608, 432718, 967538, 2032316
For n=m=1 the sequences are ab (2 runs) and ba (2 runs), so T(1,1)=2+2=4.
For n=1, m=2 the sequences are aab (2 runs), aba (3 runs), baa (2 runs), so T(1,2)=2+3+2=7.
For n=m=2 the sequences are aabb (2 runs), abab (4 runs), abba (3 runs), baab (3 runs), baba (4 runs), bbaa (2 runs), so T(2,2) = 2+4+3+3+4+2=18.
A269440
Alternating sum of 9-gonal (or decagonal) pyramidal numbers.
Original entry on oeis.org
0, -1, 9, -25, 55, -100, 166, -254, 370, -515, 695, -911, 1169, -1470, 1820, -2220, 2676, -3189, 3765, -4405, 5115, -5896, 6754, -7690, 8710, -9815, 11011, -12299, 13685, -15170, 16760, -18456, 20264, -22185, 24225, -26385, 28671, -31084, 33630, -36310, 39130
Offset: 0
-
Table[(-1)^n (2 n - 1) ((14 n^2 + 34 n + 15)/48) + 5/16, {n, 0, 40}]
LinearRecurrence[{-3, -2, 2, 3, 1}, {0, -1, 9, -25, 55}, 41]
Comments