cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A122062 Numbers k such that k^2 + 16 is prime.

Original entry on oeis.org

1, 5, 9, 11, 15, 21, 25, 29, 31, 41, 49, 51, 55, 65, 75, 79, 81, 89, 91, 95, 99, 109, 115, 119, 121, 125, 129, 151, 165, 179, 191, 211, 219, 221, 229, 231, 245, 249, 265, 275, 281, 289, 291, 295, 299, 301, 311, 315, 335, 351, 355, 361, 365, 369, 381, 389, 391
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 14 2006

Keywords

Examples

			If k=99 then k^2 + 16 = 9817 (prime).
		

Crossrefs

Programs

A246562 Primes p such that 4+p, 4+p^2, 4+p^3, 4+p^5, and 4+p^7 are all prime.

Original entry on oeis.org

7, 469363, 2552713, 3378103, 6595597, 6629683, 39837517, 46024063, 46167307, 97371007, 97629403, 105528217, 136983307, 169483033, 202953613, 213792193, 216520987, 216738043, 221705647, 304033927, 317502193, 359133553
Offset: 1

Views

Author

Zak Seidov, Aug 29 2014

Keywords

Comments

All terms are == {3, 7} mod 10. Subsequence of A246519.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[193*10^5]],AllTrue[#^{1,2,3,5,7}+4,PrimeQ]&] (* Harvey P. Dale, Sep 07 2024 *)
  • PARI
    forprime(p=1,10^9,if(ispseudoprime(4+p) && ispseudoprime(4+p^2) && ispseudoprime(4+p^3) && ispseudoprime(4+p^5) && ispseudoprime(4+p^7), print1(p,", "))) \\ Derek Orr, Aug 30 2014

A129412 Numbers k such that mean of 7 consecutive squares starting with k^2 is prime.

Original entry on oeis.org

0, 2, 4, 10, 12, 14, 24, 30, 32, 34, 42, 44, 54, 62, 64, 70, 82, 84, 92, 94, 100, 112, 114, 122, 132, 134, 144, 152, 160, 164, 174, 180, 190, 200, 204, 212, 214, 230, 232, 240, 242, 250, 252, 262, 264, 272, 274, 284, 290, 300, 304, 310, 314, 344, 354, 370, 372
Offset: 1

Views

Author

Zak Seidov, Apr 14 2007

Keywords

Comments

Sum of 7 consecutive squares starting with k^2 is equal to 7*(13 + 6*k + k^2) and mean is (13 + 6*k + k^2) = (k+3)^2+4. Hence a(n) = A007591(n+1)-3.

Examples

			(0^2+...+6^2)/7=13 prime, (2^2+...+8^2)/7=29 prime, (4^2+...+10^2)/7=53 prime.
		

Crossrefs

Programs

A264790 Numbers k such that k^2 + 17 is prime.

Original entry on oeis.org

0, 6, 24, 60, 66, 78, 90, 108, 144, 162, 174, 186, 234, 252, 294, 300, 318, 330, 336, 342, 372, 396, 420, 438, 456, 462, 468, 498, 528, 594, 636, 648, 654, 672, 720, 750, 798, 804, 834, 858, 888, 924, 930, 966, 984, 990, 1014, 1026, 1032, 1086, 1158, 1194, 1200
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 25 2015

Keywords

Comments

Primes of the form k^2 + 17 have a representation as a sum of 2 squares because they belong to A002144.
All terms are multiple of 6.

Examples

			a(3) = 24 because 24^2 + 17 = 593, which is prime.
		

Crossrefs

Cf. A228244 (associated primes).
Other sequences of the type "Numbers n such that n^2 + k is prime": A005574 (k=1), A067201 (k=2), A049422 (k=3), A007591 (k=4), A078402 (k=5), A114269 (k=6), A114270 (k=7), A114271 (k=8), A114272 (k=9), A114273 (k=10), A114274 (k=11), A114275 (k=12), A113536 (k=13), A121250 (k=14), A121982 (k=15), A122062 (k=16).

Programs

  • Magma
    [n: n in [0..1200 ] | IsPrime(n^2+17)]; // Vincenzo Librandi, Nov 25 2015
  • Mathematica
    Select[Range[0, 1200], PrimeQ[#^2 + 17] &] (* Michael De Vlieger, Nov 25 2015 *)
  • PARI
    for(n=0, 1e3, if(isprime(n^2+17), print1(n, ", "))) \\ Altug Alkan, Nov 25 2015
    

Formula

A000005(A241847(a(n))) = 2.
A241847(a(n)) = A228244(n).

Extensions

Edited by Bruno Berselli, Nov 26 2015

A243095 Least integer m > 1 such that 4 + m^n is prime or 1 if only 4 + 1^n is prime.

Original entry on oeis.org

3, 3, 3, 1, 7, 3, 7, 1, 3, 3, 9, 1, 33, 7, 9, 1, 43, 17, 27, 1, 9, 3, 7, 1, 55, 47, 285, 1, 27, 3, 39, 1, 43, 117, 163, 1, 63, 255, 15, 1, 87, 3, 43, 1, 187, 77, 37, 1, 105, 45, 25, 1, 99, 305, 79, 1, 3, 27, 903, 1, 127, 293, 255, 1, 27, 27, 435, 1, 207, 143, 127, 1, 117, 295, 1159, 1, 477
Offset: 1

Views

Author

Zak Seidov, Aug 29 2014

Keywords

Comments

If n is a multiple of 4 then 4 + m^n is prime iff m = 1.
4 + m^(4*x) = (m^(2*x)-2*m^x+2) * (m^(2*x)+2*m^x+2). - Jens Kruse Andersen, Sep 02 2014

Crossrefs

Programs

  • PARI
    a(n)=if(n%4==0,return(1));m=2;while(!ispseudoprime(4+m^n),m++);return(m)
    vector(100,n,a(n)) \\ Derek Orr, Aug 29 2014

A284014 Numbers k such that {k + 2, k + 4} and {k^2 + 2, k^2 + 4} are both twin prime pairs.

Original entry on oeis.org

1, 3, 15, 57, 147, 2085, 6687, 6957, 11055, 15267, 17385, 17577, 20505, 20637, 23667, 26247, 31077, 31317, 32115, 32967, 34497, 39225, 47775, 52065, 53715, 55335, 56205, 58365, 62187, 63585, 66567, 67215, 70875, 77235, 77475, 82005, 85827, 89595, 89817, 107505
Offset: 1

Views

Author

K. D. Bajpai, Mar 18 2017

Keywords

Comments

After a(1), all the terms are multiples of 3.
After a(2), all the terms are congruent to 5 or 7 (mod 10).

Examples

			a(2) = 3, {3 + 2 = 5, 3 + 4 = 7} and {3^2 + 2 = 11, 3^2 + 4 = 13} are twin prime pairs.
a(3) = 15, {15 + 2 = 17, 15 + 4 = 19} and {15^2 + 2 = 227, 15^2 + 4 = 229} are twin prime pairs.
		

Crossrefs

Appears to be the intersection of A086381 and A256388, but that may be unproven.

Programs

  • Magma
    [n: n in [0..100000] | IsPrime(n+2) and IsPrime(n+4) and IsPrime(n^2+2) and IsPrime(n^2+4)];
    
  • Mathematica
    Select[Range[1000000], PrimeQ[# + 2] && PrimeQ[# + 4] && PrimeQ[#^2 + 2] && PrimeQ[#^2 + 4] &]
  • PARI
    for(n=1, 100000,2; if(isprime(n+2) && isprime(n+4) && isprime(n^2+2) &&isprime(n^2+4), print1(n, ", ")))
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A284014 (MATCHING-POS 1 1 (lambda (n) (and (= 1 (A010051 (+ n 2))) (= 1 (A010051 (+ n 4))) (= 1 (A010051 (+ (* n n) 2))) (= 1 (A010051 (+ (* n n) 4)))))))
    ;; Antti Karttunen, Apr 15 2017

A089747 Numbers n such that n^2 - 2n + 5 is prime.

Original entry on oeis.org

0, 2, 4, 6, 8, 14, 16, 18, 28, 34, 36, 38, 46, 48, 58, 66, 68, 74, 86, 88, 96, 98, 104, 116, 118, 126, 136, 138, 148, 156, 164, 168, 178, 184, 194, 204, 208, 216, 218, 234, 236, 244, 246, 254, 256, 266, 268, 276, 278, 288, 294, 304, 308, 314, 318, 348, 358, 374
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 08 2004

Keywords

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna, 1988.
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano, 1997.

Crossrefs

Cf. A005473 gives primes, A007591.

Programs

Formula

a(n) = A007591(n-1) + 1 for n > 1. [corrected by Georg Fischer, Jun 20 2020]
Previous Showing 21-27 of 27 results.