A375712
Numbers k such that A013929(k+1) - A013929(k) = 4. In other words, the k-th nonsquarefree number is 4 less than the next nonsquarefree number.
Original entry on oeis.org
1, 4, 7, 11, 12, 13, 14, 22, 25, 26, 29, 32, 35, 39, 40, 41, 42, 50, 53, 54, 61, 64, 70, 71, 72, 75, 78, 81, 82, 83, 84, 87, 90, 98, 99, 102, 109, 110, 117, 120, 123, 124, 127, 135, 139, 140, 144, 151, 154, 155, 156, 157, 160, 163, 168, 169, 170, 173, 176, 179
Offset: 1
The initial nonsquarefree numbers are 4, 8, 9, 12, 16, 18, 20, 24, 25, which first increase by 4 after the first, fourth, and seventh terms.
A053797 gives lengths of runs of nonsquarefree numbers, firsts
A373199.
A375707 counts squarefree numbers between consecutive nonsquarefree numbers.
Cf.
A007674,
A014689,
A029707,
A049094,
A061399,
A068781,
A072284,
A110969,
A120992,
A294242,
A375927.
A376267
Run-lengths of first differences (A078147) of nonsquarefree numbers (A013929).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 3, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2
Offset: 1
The sequence of nonsquarefree numbers (A013929) is:
4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, ...
with first differences (A078147):
4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, ...
with runs:
(4),(1),(3),(4),(2,2),(4),(1),(2),(1),(4,4,4,4),(1),(3),(1,1),(2,2,2), ...
with lengths (A376267):
1, 1, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, ...
For prime instead of nonsquarefree numbers we have
A333254.
For run-sums instead of run-lengths we have
A376264.
For squarefree instead of nonsquarefree we have
A376306.
For prime-powers instead of nonsquarefree numbers we have
A376309.
For compression instead of run-lengths we have
A376312.
Cf.
A007674,
A053797,
A053806,
A072284,
A112925,
A120992,
A373198,
A375707,
A376305,
A376307,
A376311,
A380595.
-
nsf:= remove(numtheory:-issqrfree, [$4..1000]):
S:= nsf[2..-1]-nsf[1..-2]:
R:= NULL: x:= 4: t:= 1:
for i from 2 to nops(S) do
if S[i] = x then t:= t+1
else R:= R,t; x:= S[i]; t:= 1
fi
od:
R; # Robert Israel, Jan 27 2025
-
Length/@Split[Differences[Select[Range[1000], !SquareFreeQ[#]&]]]//Most
A215726
Numbers k such that the k-th triangular number is squarefree.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 19, 20, 21, 22, 28, 29, 30, 33, 34, 37, 38, 41, 42, 43, 46, 51, 52, 57, 58, 59, 60, 61, 65, 66, 67, 68, 69, 70, 73, 76, 77, 78, 82, 83, 84, 85, 86, 91, 92, 93, 94, 101, 102, 105, 106, 109, 110, 113, 114, 115, 118, 122, 123
Offset: 1
14 is a term because A000217(14) = 14*15/2 = 105 = 3*5*7.
- Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 184.
A369020
Numbers k such that k and k+1 have the same maximal exponent in their prime factorization.
Original entry on oeis.org
2, 5, 6, 10, 13, 14, 21, 22, 29, 30, 33, 34, 37, 38, 41, 42, 44, 46, 49, 57, 58, 61, 65, 66, 69, 70, 73, 75, 77, 78, 80, 82, 85, 86, 93, 94, 98, 99, 101, 102, 105, 106, 109, 110, 113, 114, 116, 118, 122, 129, 130, 133, 135, 137, 138, 141, 142, 145, 147, 154, 157
Offset: 1
-
emax[n_] := emax[n] = Max[FactorInteger[n][[;; , 2]]]; emax[1] = 0; Select[Range[200], emax[#] == emax[# + 1] &]
-
emax(n) = if(n == 1, 0, vecmax(factor(n)[, 2]));
lista(kmax) = {my(e1 = 0, e2); for(k = 2, kmax, e2 = emax(k); if(e1 == e2, print1(k-1, ", ")); e1 = e2);}
A069977
Numbers k such that k and k+2 are squarefree.
Original entry on oeis.org
1, 3, 5, 11, 13, 15, 17, 19, 21, 29, 31, 33, 35, 37, 39, 41, 51, 53, 55, 57, 59, 65, 67, 69, 71, 77, 83, 85, 87, 89, 91, 93, 95, 101, 103, 105, 107, 109, 111, 113, 127, 129, 131, 137, 139, 141, 143, 149, 155, 157, 159, 161, 163, 165, 177, 179, 181, 183, 185, 191, 193
Offset: 1
Sharon Sela (sharonsela(AT)hotmail.com), May 01 2002
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
- Bin Chen, On almost-prime $k$-tuples, arXiv preprint (2023). arXiv:2301.05044 [math.NT], 2023.
- Leon Mirsky, On the frequency of pairs of square-free numbers with a given difference, Bull. Amer. Math. Soc., Vo. 55, No. 10 (1949), pp. 936-939.
-
f[n_] := Union[ Transpose[ FactorInteger[n]] [[ -1]]] [[ -1]]; Select[ Range[200], f[ # ] < 2 && f[ # + 2] < 2 & ]
SequencePosition[Table[If[SquareFreeQ[n],1,0],{n,200}],{1,,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, Oct 06 2017 *)
-
is(n)=n%2 && issquarefree(n) && issquarefree(n+2) \\ Charles R Greathouse IV, May 15 2016
Original entry on oeis.org
0, 1, 0, 1, 4, 5, 0, 1, 2, 9, 4, 5, 12, 13, 0, 1, 4, 5, 2, 9, 20, 21, 4, 1, 4, 1, 12, 13, 28, 29, 0, 1, 32, 33, 4, 5, 36, 37, 2, 9, 40, 41, 20, 13, 14, 45, 4, 5, 2, 9, 4, 25, 4, 5, 12, 13, 56, 57, 28, 29, 60, 9, 0, 1, 64, 65, 32, 33, 68, 69, 4, 5, 72, 13, 36, 37, 76, 77, 2, 1, 2, 81, 40, 41
Offset: 2
A172187
Numbers k such that k and k+1 are squarefree but 2*k+1 is not.
Original entry on oeis.org
13, 22, 37, 58, 73, 85, 94, 122, 130, 137, 157, 166, 181, 193, 202, 229, 237, 238, 253, 262, 265, 301, 302, 310, 318, 346, 373, 382, 409, 418, 433, 437, 445, 454, 462, 465, 481, 514, 517, 526, 537, 541, 553, 562, 589, 598, 634, 661, 662, 670, 697, 706, 733
Offset: 1
-
Select[Range[750], And @@ SquareFreeQ /@ {#, # + 1} && !SquareFreeQ[2# + 1] &] (* Amiram Eldar, Mar 22 2020 *)
A194002
Numbers k that are the start of a sequence of 7 maximally-squarefree numbers.
Original entry on oeis.org
1, 65, 137, 209, 217, 281, 353, 433, 641, 713, 785, 793, 857, 937, 1001, 1217, 1289, 1361, 1433, 1505, 1577, 1657, 1793, 1865, 1937, 2081, 2089, 2233, 2305, 2377, 2441, 2513, 2585, 2665, 2729, 2801, 2953, 3017, 3089, 3161, 3241, 3305, 3313, 3457, 3529, 3593
Offset: 1
-
sfQ[n_]:=Module[{c4=FactorInteger[n[[4]]],r=Drop[n,{4}]},First[c4] == {2,2} && Max[Transpose[Rest[c4]][[2]]]==1&&And@@SquareFreeQ/@r]; Join[{1}, Transpose[ Select[Partition[Range[2,3600],7,1],sfQ]][[1]]] (* Harvey P. Dale, Nov 22 2011 *)
-
ap(n)={forstep(k=1,n,8,
if(issquarefree(k)&&issquarefree(k+1)&&issquarefree(k+2)&&
issquarefree((k+3)\2)&&
issquarefree(k+4)&&issquarefree(k+5)&&issquarefree(k+6),
print1(k", ")))}
A229882
Squarefree oblong numbers.
Original entry on oeis.org
2, 6, 30, 42, 110, 182, 210, 462, 506, 870, 930, 1122, 1190, 1406, 1482, 1722, 1806, 2162, 3306, 3422, 3782, 4290, 4422, 4830, 4970, 5402, 6006, 6162, 6806, 7310, 7482, 8742, 8930, 10302, 10506, 11130, 11342, 11990, 12210, 12882, 13110, 14042, 15006, 16770, 17030
Offset: 1
-
Select[#*(# + 1) & /@ Range[150], SquareFreeQ] (* Amiram Eldar, Feb 22 2021 *)
-
for(n=1,1e4,if(issquarefree(n) && issquarefree(n+1), print1(n*(n+1)", "))) \\ Charles R Greathouse IV, Mar 18 2014
Wrong term removed and more terms added by
Amiram Eldar, Feb 22 2021
A335962
Numbers k such that k^2 + 1 and k^2 + 2 are both squarefree.
Original entry on oeis.org
1, 2, 3, 6, 8, 9, 10, 11, 12, 15, 16, 17, 20, 21, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 39, 42, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 60, 61, 62, 64, 65, 66, 69, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 87, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101
Offset: 1
1 is a term since 1^2 + 1 = 2 and 1^1 + 2 = 3 are both squarefree.
Comments