cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A007681 a(n) = (2*n+1)^2*n!.

Original entry on oeis.org

1, 9, 50, 294, 1944, 14520, 121680, 1134000, 11652480, 130999680, 1600300800, 21115987200, 299376000000, 4539498163200, 73316942899200, 1256675067648000, 22784918188032000, 435717099417600000
Offset: 0

Views

Author

Keywords

References

  • H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    Table[(2n+1)^2 n!,{n,0,20}] (* Harvey P. Dale, Mar 10 2023 *)

Formula

E.g.f.: (1 + 6*x + x^2)/(1 - x)^3. - Ilya Gutkovskiy, May 12 2017

A007682 a(n) = -Sum_{k = 0..n-1} (n+k)!a(k)/(2k)!.

Original entry on oeis.org

1, -1, 1, 1, -1, -17, -107, -415, 1231, 56671, 924365, 11322001, 97495687, -78466897, -31987213451, -1073614991039, -26754505127713, -558657850929473, -9259584394031075, -70982644052430799, 3334438016903221111, 240585292388924690959, 10679411902033402697861
Offset: 0

Views

Author

Keywords

References

  • H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    A007682 := proc(n) option remember; if n=0 then RETURN(1) fi; if n>0 then RETURN((-1)*add((n+k)!*'A007682(k)'/(2*k)!, k=0..n-1 )) fi; end;
  • Mathematica
    a[n_] := a[n] = -Sum[(n+k)!*a[k]/(2*k)!, {k, 0, n-1}]; a[0] = 1; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jan 27 2014 *)

A082028 Expansion of exp(x)*(1+x)/(1-x)^2.

Original entry on oeis.org

1, 4, 17, 82, 457, 2936, 21529, 178102, 1644017, 16768972, 187417921, 2278607354, 29947410937, 423169937152, 6398329449737, 103084196690206, 1763095226149729, 31906336189354772, 609120963614954737
Offset: 0

Views

Author

Paul Barry, Apr 01 2003

Keywords

Comments

Binomial transform of A007680.

Crossrefs

Cf. A082029.

Programs

  • Mathematica
    CoefficientList[Series[E^x*(1+x)/(1-x)^2, {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jul 02 2015 *)

Formula

E.g.f.: exp(x)(1+x)/(1-x)^2.
D-finite with recurrence -2*a(n) + (2*n+7)*a(n-1) - 5*n*a(n-2) + 3*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 09 2012
a(n) ~ n! * 2*exp(1)*n. - Vaclav Kotesovec, Jul 02 2015

A084253 a(n) is the denominator of the coefficient of z^(2n-1) in the Maclaurin expansion of Sqrt[Pi]Erfi[z].

Original entry on oeis.org

1, 3, 5, 21, 108, 660, 4680, 37800, 342720, 3447360, 38102400, 459043200, 5987520000, 84064780800, 1264085222400, 20268952704000, 345226033152000, 6224529991680000, 118443913555968000, 2372079457972224000
Offset: 1

Views

Author

Eric W. Weisstein, May 23 2003

Keywords

Comments

Numerators are unity for n>2.
Same as A007680/2 for n>2.

Crossrefs

Cf. A007680.

Programs

  • Mathematica
    Join[{1, 3}, Table[(2*n - 1)*n!/(2*n), {n,3,50}]] (* or *) Denominator[ CoefficientList[Series[Sqrt[Pi]*Erf[t], {t, 0, 10}], t]][[2 ;; ;; 2]] (* G. C. Greubel, Jan 12 2017 *)
  • PARI
    concat([1,3], for(n=3, 50, print1((2*n-1)*n!/(2*n), ", "))) \\ G. C. Greubel, Jan 12 2017

Formula

a(n) = (2*n-1)*(n-1)!/2 for n>2.

A154987 Triangle read by rows: T(n,k) = t(n,k) + t(n,n-k), where t(n,k) = 2*(n!/k!)*(2*(n + k) - 1).

Original entry on oeis.org

-2, 4, 4, 13, 20, 13, 41, 69, 69, 41, 183, 268, 264, 268, 183, 1099, 1405, 1080, 1080, 1405, 1099, 7943, 9486, 5970, 4080, 5970, 9486, 7943, 65547, 75775, 43806, 20370, 20370, 43806, 75775, 65547, 604831, 685672, 384552, 149520, 77280, 149520, 384552, 685672, 604831
Offset: 0

Views

Author

Roger L. Bagula, Jan 18 2009

Keywords

Examples

			     -2;
      4,     4;
     13,    20,    13;
     41,    69,    69,    41;
    183,   268,   264,   268,   183;
   1099,  1405,  1080,  1080,  1405,  1099;
   7943,  9486,  5970,  4080,  5970,  9486,  7943;
  65547, 75775, 43806, 20370, 20370, 43806, 75775, 65547;
  ...
		

Programs

  • Maple
    t:= proc(n,k) option remember; ## simplified t;
    2*(n+k-1/2)*(n!/k!);
    end proc:
    A154987:= proc(n,k) ## n >= 0 and k = 0 .. n
    t(n,k) + t(n,n-k)
    end proc: # Yu-Sheng Chang, Apr 13 2020
  • Mathematica
    (* First program *)
    t[n_, k_]:= 2*n!*Gamma[n+k+1/2]/(k!*Gamma[n+k-1/2]);
    T[n_, k_]:= t[n, k] + t[n,n-k];
    Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten
    (* Second Program *)
    T[n_, k_]:= Binomial[n, k]*((n-k)!*(2*n+2*k-1) + k!*(4*n-2*k-1));
    Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, May 28 2020 *)
  • Sage
    def T(n, k): return binomial(n, k)*(factorial(n-k)*(2*n+2*k-1) + factorial(k)*(4*n-2*k-1))
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 28 2020

Formula

T(n,k) = t(n,k) + t(n,n-k), where t(n,k) = 2*n!*Gamma(n + k + 1/2)/(k!*Gamma(n + k - 1/2)).
T(n,k) = t(n,k) + t(n,n-k), where t(n,k) = 2*(n+k-1/2)*(n!/k!). - Yu-Sheng Chang, Apr 13 2020
From G. C. Greubel, May 28 2020: (Start)
T(n,k) = binomial(n,k)*( (2*n+2*k-1)*(n-k)! + (4*n-2*k-1)*k! ).
T(n,n-k) = T(n,k), for k >= 0.
Sum_{k=0..n} T(n,k) = 2*( 2*n-1 + (2*n+1)*n!*e_{n-1}(1) ), where e_{n}(x) is the finite exponential function = Sum_{k=0..n} x^k/k!.
Sum_{k=0..n} T(n,k) = 2*( 2*n-1 + (2*n+1)*A007526(n) ).
T(n,0) = A175925(n-1) + 2*n.
T(n,1) = A007680(n) + A001107(n). (End)

Extensions

Partially edited by Andrew Howroyd, Mar 26 2020
Additionally edited by G. C. Greubel, May 28 2020
Previous Showing 31-35 of 35 results.