cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 195 results. Next

A245775 Numbers k such that A017666(k) = denominator(sigma(k)/k) = 3.

Original entry on oeis.org

3, 12, 84, 234, 270, 1080, 1488, 1638, 6048, 6552, 24384, 35640, 199584, 435708, 2142720, 4713984, 12999168, 18506880, 36197280, 100651008, 208565280, 240589440, 275890944, 299980800, 470564640, 3899750400, 4138364160, 6039429120, 13286744064, 17827568640
Offset: 1

Views

Author

Jaroslav Krizek, Aug 26 2014

Keywords

Comments

Numbers n such that sigma(n)/n = k + 1/3 with integer k are terms of this sequence (3, 12, 234, 1080, 6048, 6552, 435708, 4713984, ...).
Subsequence of A245774 (numbers n such that n divides 3*sigma(n)).
Union of A160320 (sigma(n)/n = k + 1/3) and A160321 (sigma(n)/n = k + 2/3). - Michel Marcus, Aug 27 2014

Examples

			Number 12 is in sequence because A017666(12) = 3.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..3000000] | Denominator((SumOfDivisors(n))/n) eq 3]
    
  • PARI
    for(n=1,10^7,if(denominator(sigma(n)/n)==3,print1(n,", "))) \\ Derek Orr, Aug 26 2014

Extensions

More terms from A160320 and A160321 by Michel Marcus, Aug 27 2014

A245782 Refactorable multiply-perfect numbers.

Original entry on oeis.org

1, 672, 30240, 23569920, 45532800, 14182439040, 153003540480, 403031236608, 518666803200, 13661860101120, 740344994887680, 796928461056000, 212517062615531520, 87934476737668055040, 154345556085770649600, 170206605192656148480, 1161492388333469337600, 1802582780370364661760
Offset: 1

Views

Author

Jaroslav Krizek, Aug 01 2014

Keywords

Comments

Multiply-perfect numbers k (A007691) such that k / tau(k) is an integer.
Also multiply-perfect numbers k (A007691) such that (k / tau(k) - sigma(k) / k) = (k / A000005(k) - A000203(k) / k) is an integer.
Also multiply-perfect numbers k (A007691) such that (k / tau(k) + sigma(k) / k) = (k / A000005(k) + A000203(k) / k) is an integer.

Examples

			Multiply-perfect number 672 is in sequence because 672 / tau(672) = 28 (integer).
		

Crossrefs

Intersection of A033950 (refactorable numbers) and A007691 (multiply-perfect numbers).
Subsequence of A245778 and A245786.
Supersequence of A047728.

Programs

  • Magma
    [n:n in [A007691(n)] | (Denominator((n/(#[d: d in Divisors(n)]))-(SumOfDivisors(n)/n))) eq 1];
    
  • Mathematica
    q[n_] := Module[{d = DivisorSigma[0, n], s = DivisorSigma[1, n]}, Divisible[s, n] && Divisible[n, d]]; Select[Range[31000], q] (* Amiram Eldar, May 09 2024 *)
  • PARI
    isok(n) = !(n % numdiv(n)) && !(sigma(n) % n); \\ Michel Marcus, Aug 11 2014
    
  • PARI
    is(k) = {my(f = factor(k), s = sigma(f), d = numdiv(f)); !(s % k) && !(k % d);} \\ Amiram Eldar, May 09 2024

Extensions

a(14)-a(18) from Amiram Eldar, May 09 2024

A259307 Numbers that belong to at least one amicable multiset.

Original entry on oeis.org

1, 6, 28, 120, 220, 284, 496, 672, 1184, 1210, 1560, 1740, 1980, 2016, 2556, 2620, 2924, 5020, 5564, 6232, 6368, 7380, 7776, 8128, 9180, 9504, 10744, 10856, 11556, 12285, 14595, 17296, 18416, 19260, 20448, 20640, 20664, 21168, 21384, 21924, 22200, 22428, 22752
Offset: 1

Views

Author

Jeppe Stig Nielsen, Jun 23 2015

Keywords

Comments

Call a finite multiset {x_1, x_2, ..., x_k} of natural numbers (the x_i need not be distinct) an amicable multiset iff sigma(x_1)=sigma(x_2)=...=sigma(x_k)=x_1+x_2+...+x_k.
By definition, A255215 is a subset because a set can be regarded as a special multiset.
Also A007691 is a subset, since a k-perfect number corresponds to an amicable multiset in an obvious way. For example, since 120 is 3-perfect, the multiset {120, 120, 120} is amicable.
The first amicable multiset that belongs to neither A255215 nor A007691 is {1740, 1740, 1560}.

Crossrefs

Programs

  • PARI
    /* write amicable multisets */ sMax=10^7;sigmaVals=vector(sMax,x,[]);for(n=1,sMax,s=sigma(n);s<=sMax&sigmaVals[s]=concat(sigmaVals[s],[n]));(MultisetSum(numbers,desiredSum,track)=if(desiredSum<0,return);if(desiredSum==0,print(apply(x->numbers[x],track));return);for(i=if(track,track[#track],1),#numbers,MultisetSum(numbers,desiredSum-numbers[i],concat(track,[i]))));for(s=1,sMax,MultisetSum(sigmaVals[s],s,[]))

A046763 Numbers that divide the sum of cubes of their divisors.

Original entry on oeis.org

1, 6, 42, 120, 168, 270, 280, 312, 496, 672, 728, 840, 1080, 1560, 1782, 1806, 1890, 2044, 2184, 2520, 3472, 3640, 3913, 4256, 5880, 6048, 6552, 6615, 7224, 7560, 7826, 8128, 9120, 9424, 9933, 10804, 10920, 11400, 12040, 12768, 13230, 13626, 14040
Offset: 1

Views

Author

Keywords

Comments

Compare with multiply perfect numbers, A007691. Here Sum(divisors) is replaced by Sum(cube of divisors).
Problem 11090 proves that this sequence is infinite. - T. D. Noe, Apr 18 2006
Tomohiro Yamada found that the odd number 209195 is a term. (See the Editorial Comment after the solution to Problem 11090.) - Jonathan Sondow, Nov 23 2012

Examples

			For k = 168 = a(5), Sum(d^3) = 5634720 = 33540*168 = 33540*k;
		

Crossrefs

Programs

A093034 Primes of the form 1 + multiple perfect number.

Original entry on oeis.org

2, 7, 29, 673, 30241, 523777, 2178541, 23569921, 33550337, 66433720321, 137438691329, 30823866178561, 796928461056001, 1802582780370364661761, 9186050031556349952001, 2827987212986831882236723201, 630532357710420079508428362350593, 1928622300236318049928258133164033
Offset: 1

Views

Author

Labos Elemer, May 12 2004

Keywords

Comments

From M. F. Hasler and Farideh Firoozbakht, Apr 08 2010: (Start)
Theorem: If p is a term of this sequence and p-1 is a t-perfect number then for each positive integer k, x=p^k is a solution to the equation sigma(phi(x)) = t*(x-1).
Proof: sigma(phi(x)) = sigma(phi(p^k)) = sigma((p-1)*p^(k-1)) = sigma(p-1)*sigma(p^(k-1)) = t*(p-1)*(p^k-1)/(p-1) = t*(p^k-1) = t*(x-1). (End)

Crossrefs

Cf. A000010 (phi), A000203 (sigma), A007691, A171263, A171264, A171265.

Extensions

a(11)-a(16) from Donovan Johnson, Nov 30 2008
a(17)-a(18) from Amiram Eldar, May 09 2024

A325021 Harmonic numbers m from A001599 such that m*(m-tau(m))/sigma(m) is an integer h, where k-tau(k) is the number of nondivisors of k (A049820), tau(k) is the number of divisors of k (A000005), and sigma(k) is the sum of the divisors of k (A000203).

Original entry on oeis.org

1, 6, 28, 496, 672, 8128, 30240, 32760, 332640, 695520, 2178540, 17428320, 23569920, 33550336, 45532800, 52141320, 142990848, 164989440, 318729600, 447828480, 481572000, 500860800, 540277920, 623397600, 644271264, 714954240, 995248800, 1047254400, 1307124000
Offset: 1

Views

Author

Jaroslav Krizek, Mar 27 2019

Keywords

Comments

Numbers m such that m*tau(m)/sigma(m) is an integer g and simultaneously m*(m-tau(m))/sigma(m) is an integer h. Corresponding values of integers g: 1, 2, 3, 5, 8, 7, 24, 24, 44, 46, 54, 96, 80, 13, 96, ...
Corresponding values of integers h: 0, 1, 11, 243, 216, 4057, 7536, 8166, 76186, 166589, ...
Even perfect numbers from A000396 are terms.
Complement of A325022 with respect to A001599.
Intersection of A325020 and A001599.

Examples

			Harmonic number 28 is a term because 28*tau(28)/sigma(28) = 28*6/56 = 3 (integer) and simultaneously 28*(28-tau(28))/sigma(28) = 28*(28-6)/56 = 11 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | IsIntegral((NumberOfDivisors(n) * n) / SumOfDivisors(n)) and IsIntegral(((n-NumberOfDivisors(n)) * n) / SumOfDivisors(n))]
    
  • Mathematica
    Select[Range[10^6], And[IntegerQ@ HarmonicMean@ #2, IntegerQ[#1 (#1 - #3)/#4]] & @@ Join[{#}, {Divisors@ #}, DivisorSigma[{0, 1}, #]] &] (* Michael De Vlieger, Mar 27 2019 *)
  • PARI
    isok(m) = my(d=numdiv(m), s=sigma(m)); !frac(m*d/s) && !frac(m*(m-d)/s); \\ Michel Marcus, Mar 27 2019
    
  • Python
    from itertools import count, islice
    from math import prod
    from functools import reduce
    from sympy import factorint
    def A325021_gen(startvalue=1): # generator of terms >= startvalue
        for n in count(max(startvalue,1)):
            f = factorint(n)
            s = prod((p**(e+1)-1)//(p-1) for p, e in f.items())
            if not (n*n%s or reduce(lambda x,y:x*y%s,(e+1 for e in f.values()),1)*n%s):
                yield n
    A325021_list = list(islice(A325021_gen(),10)) # Chai Wah Wu, Feb 14 2023

A325637 Numbers k for which gcd(2k, sigma(k)) = 2k.

Original entry on oeis.org

6, 28, 496, 8128, 30240, 32760, 2178540, 23569920, 33550336, 45532800, 142990848, 1379454720, 8589869056, 43861478400, 66433720320, 137438691328, 153003540480, 403031236608, 704575228896, 181742883469056, 6088728021160320, 14942123276641920, 20158185857531904, 275502900594021408, 622286506811515392, 2305843008139952128
Offset: 1

Views

Author

Antti Karttunen, May 21 2019

Keywords

Comments

Multiply-perfect numbers (A007691) k with an even abundancy index sigma(k)/k. - Amiram Eldar, Jun 26 2024

Crossrefs

Subsequences: A000396, A336702 (after its initial 1).
Subsequence of A007691.

Programs

  • PARI
    isA325637(n) = ((n+n)==gcd(n+n,sigma(n)));

Formula

a(n) = A224832(n)/2. - Amiram Eldar, Jun 26 2024

A326194 Number of iterations of x -> A009194(x) needed to reach a fixed point when starting from x = n, where A009194(x) = gcd(x, sigma(x)).

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 3, 2, 2, 1, 2, 2, 3, 1, 1, 2, 1, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2019

Keywords

Crossrefs

Cf. A000203, A007691 (positions of zeros), A009194, A326195, A326196.

Programs

  • PARI
    A326194(n) = { my(u=gcd(n,sigma(n))); if(u==n,0,1+A326194(u)); };

Formula

If gcd(n,sigma(n)) = n, then a(n) = 0, otherwise a(n) = 1 + a(gcd(n,sigma(n))).
a(n) < A326196(n).

A349685 Irregular triangle read by rows: the n-th row contains the elements in the continued fraction of the abundancy index of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 3, 1, 5, 2, 1, 7, 1, 1, 7, 1, 2, 4, 1, 1, 4, 1, 11, 2, 3, 1, 13, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 15, 1, 17, 2, 6, 1, 19, 2, 10, 1, 1, 1, 10, 1, 1, 1, 1, 3, 1, 23, 2, 2, 1, 4, 6, 1, 1, 1, 1, 1, 2, 1, 2, 13, 2, 1, 29, 2, 2, 2, 1, 31, 1, 1, 31
Offset: 1

Views

Author

Amiram Eldar, Nov 25 2021

Keywords

Comments

The abundancy index of n is sigma(n)/n = A000203(n)/n = A017665(n)/A017666(n).
For a prime p, the p-th row has a length 2 with a(p, 1) = 1 and a(p, 2) = p.
For multiply-perfect numbers m (A007691), the m-th row has a length 1, since their abundancy index is an integer. In particular, for a perfect number m (A000396), the m-th row has a length 1 with a(m, 1) = 2.

Examples

			The first ten rows of the triangle are:
1,
1, 2,
1, 3,
1, 1, 3,
1, 5,
2,
1, 7,
1, 1, 7,
1, 2, 4,
1, 1, 4,
...
		

Crossrefs

Programs

  • Mathematica
    row[n_] := ContinuedFraction[DivisorSigma[1, n]/n]; Table[row[k], {k, 1, 32}] // Flatten
  • PARI
    row(n) = contfrac(sigma(n)/n); \\ Michel Marcus, Nov 25 2021

A379486 Numbers k for which gcd(k,A003961(k))*gcd(sigma(k),A276086(k)) is equal to gcd(k,A276086(k))*gcd(sigma(k),A003961(k)), where A003961(n) is fully multiplicative with a(prime(i)) = prime(i+1), and A276086 is the primorial base exp-function.

Original entry on oeis.org

1, 2, 4, 6, 14, 16, 18, 24, 26, 28, 40, 54, 62, 64, 66, 74, 86, 102, 114, 122, 134, 138, 146, 152, 162, 169, 174, 176, 182, 184, 186, 206, 222, 234, 254, 270, 280, 282, 289, 290, 302, 304, 306, 308, 314, 318, 326, 338, 342, 354, 360, 361, 366, 368, 380, 384, 386, 402, 414, 422, 426, 434, 438, 441, 446, 448, 456, 474, 496
Offset: 1

Views

Author

Antti Karttunen, Jan 01 2025

Keywords

Crossrefs

Cf. A000203, A003961, A276086, A322361, A324198, A324644, A342671, A379485 (characteristic function), A379487, A379488.
Positions of 0's in A379489.
Cf. A379491 (subsequence, terms that are multiperfect numbers, A007691).

Programs

Formula

{Numbers k such that A379487(k) = A379488(k)}.
{Numbers k such that A322361(k)/A324198(k) = A324644(k)/A342671(k)}.
Previous Showing 51-60 of 195 results. Next