cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A007691 Multiply-perfect numbers: n divides sigma(n).

Original entry on oeis.org

1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608
Offset: 1

Views

Author

Keywords

Comments

sigma(n)/n is in A054030.
Also numbers such that the sum of the reciprocals of the divisors is an integer. - Harvey P. Dale, Jul 24 2001
Luca's solution of problem 11090, which proves that for k>1 there are an infinite number of n such that n divides sigma_k(n), does not apply to this sequence. However, it is conjectured that this sequence is also infinite. - T. D. Noe, Nov 04 2007
Numbers k such that sigma(k) is divisible by all divisors of k, subsequence of A166070. - Jaroslav Krizek, Oct 06 2009
A017666(a(n)) = 1. - Reinhard Zumkeller, Apr 06 2012
Bach, Miller, & Shallit show that this sequence can be recognized in polynomial time with arbitrarily small error by a probabilistic Turing machine; that is, this sequence is in BPP. - Charles R Greathouse IV, Jun 21 2013
Conjecture: If n is such that 2^n-1 is in A066175 then a(n) is a triangular number. - Ivan N. Ianakiev, Aug 26 2013
Conjecture: Every multiply-perfect number is practical (A005153). I've verified this conjecture for the first 5261 terms with abundancy > 2 using Achim Flammenkamp's data. The even perfect numbers are easily shown to be practical, but every practical number > 1 is even, so a weak form says every even multiply-perfect number is practical. - Jaycob Coleman, Oct 15 2013
Numbers such that A054024(n) = 0. - Michel Marcus, Nov 16 2013
Numbers n such that k(n) = A229110(n) = antisigma(n) mod n = A024816(n) mod n = A000217(n) mod n = (n(n+1)/2) mod n = A142150(n). k(n) = n/2 for even n; k(n) = 0 for odd n (for number 1 and eventually odd multiply-perfect numbers n > 1). - Jaroslav Krizek, May 28 2014
The only terms m > 1 of this sequence that are not in A145551 are m for which sigma(m)/m is not a divisor of m. Conjecture: after 1, A323653 lists all such m (and no other numbers). - Antti Karttunen, Mar 19 2021

Examples

			120 is OK because divisors of 120 are {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, the sum of which is 360=120*3.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 176.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chapter 15, pp. 82-88, Belin-Pour La Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 141-148.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 135-136.

Crossrefs

Complement is A054027. Cf. A000203, A054030.
Cf. A000396, A005820, A027687, A046060, A046061, for subsequences of terms with quotient sigma(n)/n = 2..6.
Subsequence of the following sequences: A011775, A071707, A083865, A089748 (after the initial 1), A102783, A166070, A175200, A225110, A226476, A237719, A245774, A246454, A259307, A263928, A282775, A323652, A336745, A340864. Also conjectured to be a subsequence of A005153, of A307740, and after 1 also of A295078.
Various number-theoretical functions applied to these numbers: A088843 [tau], A098203 [phi], A098204 [gcd(a(n),phi(a(n)))], A134665 [2-adic valuation], A307741 [sigma], A308423 [product of divisors], A320024 [the odd part], A134740 [omega], A342658 [bigomega], A342659 [smallest prime not dividing], A342660 [largest prime divisor].
Positions of ones in A017666, A019294, A094701, A227470, of zeros in A054024, A082901, A173438, A272008, A318996, A326194, A341524. Fixed points of A009194.
Cf. A069926, A330746 (left inverses, when applied to a(n) give n).
Cf. (other related sequences) A007539, A066135, A066961, A093034, A094467, A134639, A145551, A019278, A194771 [= 2*a(n)], A219545, A229110, A262432, A335830, A336849, A341608.

Programs

  • Haskell
    a007691 n = a007691_list !! (n-1)
    a007691_list = filter ((== 1) . a017666) [1..]
    -- Reinhard Zumkeller, Apr 06 2012
    
  • Mathematica
    Do[If[Mod[DivisorSigma[1, n], n] == 0, Print[n]], {n, 2, 2*10^11}] (* or *)
    Transpose[Select[Table[{n, DivisorSigma[-1, n]}, {n, 100000}], IntegerQ[ #[[2]] ]& ] ][[1]]
    (* Third program: *)
    Select[Range[10^6], IntegerQ@ DivisorSigma[-1, #] &] (* Michael De Vlieger, Mar 19 2021 *)
  • PARI
    for(n=1,1e6,if(sigma(n)%n==0, print1(n", ")))
    
  • Python
    from sympy import divisor_sigma as sigma
    def ok(n): return sigma(n, 1)%n == 0
    print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021

Extensions

More terms from Jud McCranie and then from David W. Wilson.
Incorrect comment removed and the crossrefs-section reorganized by Antti Karttunen, Mar 20 2021

A066284 a(n) = A066135(4*n).

Original entry on oeis.org

34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 386, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194, 34, 84, 34, 84, 34, 228, 34, 84, 34, 84, 34, 194
Offset: 1

Views

Author

Labos Elemer, Dec 11 2001

Keywords

Comments

a(n) <= 2p, where p = A002586(4n) is the least prime factor of (1 + 16^n). (See the Comment in A066135.) - Jonathan Sondow, Nov 23 2012

Examples

			First 3 terms correspond to entries of other sequences as follows: a(1)=A046763(2), a(2)=A055712(2), a(3)=A055716(2).
From _Michael De Vlieger_, Jul 17 2017: (Start)
First position of values, with observations pertaining to values for 1 <= n <= 3000:
    Value   Position   Observations:
    --------------------------------
       34     1        All odd.
       84     2        In A047235.
      194     6        In A017593.
      228    12
      386    36
     1282    72
     1538   144
     3084   288
   147468   576
     1956   864
  1046532  1152
    24578  2304
     3252  2880
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[m = 2; While[Mod[DivisorSigma[4 n, m], m] > 0, m++]; m, {n, 66}] (* Michael De Vlieger, Jul 17 2017 *)
  • PARI
    a(n) = {n *= 4; my(m = 2); while (sigma(m, n) % m, m++); m;} \\ Michel Marcus, Oct 02 2016

Formula

a(n) = Min{x : sigma_4n(x) mod x = 0, x > 1}

A076231 Numbers k such that sigma(k)/k, sigma_3(k)/k and sigma_5(k)/k are all integers.

Original entry on oeis.org

1, 6, 120, 672, 8128, 30240, 32760, 33550336, 459818240, 1379454720, 1476304896, 8589869056, 31998395520, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608, 30823866178560, 796928461056000, 6088728021160320, 14942123276641920, 212517062615531520
Offset: 1

Views

Author

Labos Elemer, Oct 03 2002

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = !(sigma(n) % n) && !(sigma(n, 3) % n) && !(sigma(n, 5) % n); \\ Michel Marcus, Dec 26 2013

Extensions

a(16)-a(20) from Donovan Johnson, May 08 2010
a(21)-a(23) from Amiram Eldar, May 09 2024

A076233 Numbers k such that sigma(k)/k and sigma_3(k)/k are both integers.

Original entry on oeis.org

1, 6, 120, 496, 672, 8128, 30240, 32760, 523776, 23569920, 33550336, 459818240, 1379454720, 1476304896, 8589869056, 31998395520, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608, 30823866178560, 796928461056000, 6088728021160320, 14942123276641920
Offset: 1

Views

Author

Labos Elemer, Oct 04 2002

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = !(sigma(n) % n) && !(sigma(n, 3) % n); \\ Michel Marcus, Dec 26 2013

Extensions

a(19)-a(25) from Amiram Eldar, May 09 2024

A076234 Numbers k such that sigma(k)/k, sigma_3(k)/k, sigma_5(k)/k and sigma_7(k)/k are all integers.

Original entry on oeis.org

1, 6, 120, 672, 30240, 32760, 33550336, 459818240, 1379454720, 8589869056, 31998395520, 51001180160, 137438691328, 153003540480, 30823866178560, 796928461056000, 6088728021160320, 212517062615531520, 2305843008139952128, 69357059049509038080, 143573364313605309726720
Offset: 1

Views

Author

Labos Elemer, Oct 04 2002

Keywords

Crossrefs

Cf. A066289 (k divides sigma_m(k) for all odd m).

Programs

  • PARI
    isok(n) = !(sigma(n) % n) && !(sigma(n, 3) % n) && !(sigma(n, 5) % n) && !(sigma(n, 7) % n); \\ Michel Marcus, Dec 26 2013

Extensions

a(13)-a(18) from Donovan Johnson, May 08 2010
a(19)-a(21) from Amiram Eldar, May 09 2024

A055715 Numbers k such that k | sigma_11(k).

Original entry on oeis.org

1, 6, 28, 120, 402, 496, 644, 672, 920, 1366, 1608, 1932, 2680, 2760, 3417, 3966, 4098, 4623, 4975, 5152, 6210, 6834, 8040, 8128, 8280, 9246, 9528, 9950, 12294, 13668, 15008, 15456, 15864, 16392, 18492, 19900, 24120, 24840, 25954, 27320, 27336, 29850, 30240, 32760
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_11(k) is the sum of the 11th powers of the divisors of k (A013959).

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[DivisorSigma[11, n], n]==0, Print[n]], {n, 1, 40000}]
  • PARI
    isok(k) = (sigma(k, 11) % k) == 0; \\ Michel Marcus, Nov 09 2019

Extensions

a(37)-a(40) corrected and more terms added by Amiram Eldar, Nov 09 2019
Showing 1-6 of 6 results.