cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 195 results. Next

A046986 Multiply perfect numbers that are also harmonic numbers but are not arithmetic numbers.

Original entry on oeis.org

28, 496, 8128, 2178540, 33550336, 142990848, 459818240, 1379454720, 8589869056, 43861478400, 66433720320, 137438691328, 704575228896, 181742883469056, 6088728021160320, 14942123276641920, 20158185857531904, 275502900594021408, 622286506811515392, 2305843008139952128
Offset: 1

Views

Author

Keywords

Examples

			k = 2178540 is a term since s0 = d(k) = 216 and s1 = sigma(k) = 8714160, s1/s0 = 8714160/216 = 121030/3 is not an integer, and (k * s0)/s1 = (2178540 * 216)/8714160 = 54 and s1/k = 8714160/2178540 = 4 are integers.
		

Crossrefs

In A007691 and A001599 but not in A003601.

Formula

Let s1 be the sum of divisors of k and s0 be the number of divisors of k. Then, k is a term if k | s1, s1 | (k * s0), but s1 is not divisible by s0.

Extensions

a(12)-a(17) from Donovan Johnson, Nov 30 2008
Edited and a(18)-a(21) added by Amiram Eldar, May 09 2024

A088843 Number of divisors of multiply-perfect numbers.

Original entry on oeis.org

1, 4, 6, 16, 10, 24, 14, 96, 96, 80, 216, 320, 26, 384, 480, 288, 576, 224, 34, 1920, 2304, 1056, 480, 896, 38, 960, 1344, 3456, 1620, 5280, 6336, 3888, 10368, 9216, 2816, 3584, 6480, 16384, 5400, 9600, 62, 25344, 12960, 41472, 110592, 32256, 62208, 51840, 48384
Offset: 1

Views

Author

Labos Elemer, Nov 05 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; Do[If[Divisible[DivisorSigma[1, n], n], AppendTo[s, DivisorSigma[0, n]]], {n, 1, 10^6}]; s (* Amiram Eldar, Jul 20 2019 *)

Formula

a(n) = A000005(A007691(n)).

Extensions

More terms from Michel Marcus, Sep 19 2013
Data corrected by Amiram Eldar, Jul 20 2019

A225110 Numbers m such that S = Sum_{i = 1..q} 1/d(i) is an integer where d(i) are the divisors of m in increasing order, and q the smallest integer 1 < q <= tau(m) for m > 1; and a(1) = 1.

Original entry on oeis.org

1, 6, 18, 28, 42, 54, 66, 78, 102, 114, 120, 126, 138, 162, 174, 180, 186, 196, 198, 222, 234, 246, 258, 282, 294, 306, 318, 342, 354, 366, 378, 402, 414, 426, 438, 462, 474, 486, 496, 498, 522, 534, 546, 558, 582, 594, 606, 618, 642, 654, 666, 672, 678, 702, 714
Offset: 1

Views

Author

Michel Lagneau, Apr 28 2013

Keywords

Comments

By convention, for n = 1, a(1) = 1 with q = 1.
The corresponding q are 1, 4, 4, 6, 4, 4, 4, 4, 4, 4, 16, 4, 4, 4, 4, 15, 4, 6, 4,...
Properties of this sequence:
q = tau(n) if n = 1, 6, 28, 120, 496,... is a multiply-perfect numbers: n divides sigma(n) (see A007691). This numbers are in the sequence.
S = 2 for a majority of n
S = 3 for n = 120, 180, 672, 1890, 8460, 9540,...
S = 4 for n = 30240, 32760, 90720,...

Examples

			18 is in the sequence because the divisors of 18 are 1, 2, 3, 6, 9 and 18 => 1 + 1/2 + 1/3 + 1/6 = 2.
28 is in the sequence because 28 is a multiply-perfect numbers: the divisors are 1, 2, 4, 7, 14, 28 and 1 + 1/2 + 1/4 + 1/7 + 1/14 + 1/28 = 2.
From _Michael De Vlieger_, Sep 15 2017: (Start)
Records k and first positions n of records of q that pertain to a(n) for values less than or equal to 10^7:
   i     k        n       a(n)
  ----------------------------
   1     1        1         1
   2     4        2         6
   3     6        4        28
   4    10       39       496
   5    14      608      8128
   6    15       16       180
   7    16       11       120
   8    17     1543     20482
   9    18     2521     33345
  10    20      629      8415
  11    21      145      1890
  12    22    30824    407715
  13    24       52       672
  14    26     2908     38430
  15    28     3034     40128
  16    30     1917     25410
  17    34    96461   1274100
  18    35     1544     20496
  19    43    61026    806190
  20    45     7839    103530
  21    54     5512     72800
  22    58    74184    979992
  23    69     6871     90720
  24    77   270202   3571050
  25    80    39625    523776
  26    96     2284     30240
  27   216   164870   2178540
(End)
		

Crossrefs

Programs

  • Maple
    with(numtheory): for n from 1 to 1000 do:x:=divisors(n):n1:=nops(x):s:=0:ii:=0:for q from 1 to n1 while(ii=0) do:s:=s+1/x[q]:if s=floor(s) and q>1 then ii:=1: printf(`%d, `,n):else fi:od:od:
  • Mathematica
    Select[Range@ 714, Function[n, AnyTrue[If[n > 1, Rest@ #, #] &@ FoldList[Plus, 1/Divisors@ n], IntegerQ]]] (* Michael De Vlieger, Sep 15 2017 *)
  • PARI
    isok(k) = if (k==1, return(1)); my(d=divisors(k), s=1); for (i=2, #d, s += 1/d[i]; if (denominator(s)==1, return(1));); \\ Michel Marcus, Feb 22 2025

Extensions

Name edited by Michel Marcus, Jun 13 2025

A227302 Numbers m such that m divides sigma(2*m).

Original entry on oeis.org

1, 3, 12, 14, 60, 248, 336, 2160, 2340, 4064, 13104, 15120, 16380, 261888, 1089270, 4455360, 8714160, 10213632, 11784960, 16775168, 22766400, 45981824, 71495424, 98532480, 229909120, 689727360, 738152448, 4291822080, 4294934528, 5100118016, 7091219520
Offset: 1

Views

Author

Alex Ratushnyak, Jul 05 2013

Keywords

Comments

If m belongs to the sequence, then sigma(2*m)/m is an integer, so sigma(2*m)/(2*m) is either an integer or half of an integer, so 2*m is either perfect, multiperfect or hemiperfect. - Michel Marcus, Jul 09 2013

Crossrefs

Cf. A141643, A055153, A141645, A159271, A160678. (hemiperfect numbers)

Programs

A227470 Least k such that n divides sigma(n*k).

Original entry on oeis.org

1, 3, 2, 3, 8, 1, 4, 7, 10, 4, 43, 2, 9, 2, 8, 21, 67, 5, 37, 6, 20, 43, 137, 5, 149, 9, 34, 1, 173, 4, 16, 21, 27, 64, 76, 22, 73, 37, 6, 3, 163, 10, 257, 43, 6, 137, 281, 11, 52, 76, 67, 45, 211, 17, 109, 4, 49, 173, 353, 2, 169, 8, 32, 93, 72, 27, 401, 67
Offset: 1

Views

Author

Alex Ratushnyak, Jul 12 2013

Keywords

Comments

Theorem: a(n) always exists.
Proof: If n is a power of a prime, say n = p^a, then, by Euler's generalization of Fermat's little theorem and the multiplicative property of sigma, one can take k = x^(p^a-p^(a-1)-1) where x is a different prime from p. Similarly. if n = p^a*q^b, then take k = x^(p^a-p^(a-1)-1)*y^(q^b-q^(b-1)-1) where {x,y} are primes different from {p,q}. And so on. These k's have the desired property, and so there is always at least one candidate for the minimal k. - N. J. A. Sloane, May 01 2016

Examples

			Least k such that 9 divides sigma(9*k) is k = 10: sigma(90) = 234 = 9*26. So a(9) = 10.
Least k such that 89 divides sigma(89*k) is k = 1024: sigma(89*1024) = 184230 = 89*2070. So a(89) = 1024.
		

Crossrefs

Indices of 1's: A007691.
See A272349 for the sequence [n*a(n)]. - N. J. A. Sloane, May 01 2016

Programs

  • Maple
    A227470 := proc(n)
        local k;
        for k from 1 do
            if modp(numtheory[sigma](k*n),n) =0 then
                return k;
            end if;
        end do:
    end proc: # R. J. Mathar, May 06 2016
  • Mathematica
    lknds[n_]:=Module[{k=1},While[!Divisible[DivisorSigma[1,k*n],n],k++];k]; Array[lknds,70] (* Harvey P. Dale, Jul 10 2014 *)
  • PARI
    a227470(n) = {k=1; while(sigma(n*k)%n != 0, k++); k} \\ Michael B. Porter, Jul 15 2013

Formula

a(n) = A272349(n)/n. - R. J. Mathar, May 06 2016

A263928 Integers m such that sigma(m)^2 is divisible by m.

Original entry on oeis.org

1, 6, 24, 28, 120, 224, 234, 270, 496, 588, 600, 672, 864, 1080, 1521, 1638, 1782, 2016, 3724, 4320, 4680, 5733, 6048, 6200, 6552, 7128, 8128, 11172, 11466, 15872, 17280, 18144, 18600, 18620, 21600, 22932, 26208, 26460, 27000, 30240, 32640, 32760, 33516, 35640
Offset: 1

Views

Author

Paolo P. Lava, Oct 30 2015

Keywords

Comments

Previous name was: "Numbers such that the product of the sum of their divisors and the sum of the reciprocals of their divisors is an integer".
The multiply-perfect numbers (A007691) are a subset of this sequence.
This is a subsequence of A175200. - Michel Marcus, Nov 03 2015
Alternative definition: Numbers m such that Sum_{i = 1..k} (sigma(m) - d_i) / d_i is an integer, where d_i are the k divisors of m. - Paolo P. Lava, Mar 23 2017

Examples

			Divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24. Their sum is sigma(24) = 60 while the sum of their reciprocals is 1/1 + 1/2 + 1/3 + 1/4 + 1/6 + 1/8 + 1/12 + 1/24 = 5/2. Finally 60 * 5/2 = 150.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local n;
    for n from 1 to q do if type(sigma(n)^2/n,integer) then print(n);
    fi; od; end: P(10^6);
  • Mathematica
    Select[Range[36000],Divisible[DivisorSigma[1,#]^2,#]&] (* Harvey P. Dale, Jul 05 2023 *)
  • PARI
    isok(n) = (sigma(n)^2 % n) == 0; \\ Michel Marcus, Nov 03 2015

Extensions

New name from Michel Marcus, Nov 03 2015

A318996 a(n) = Sum_{d|n} (sigma(n) mod d).

Original entry on oeis.org

0, 1, 1, 4, 1, 0, 1, 11, 5, 11, 1, 9, 1, 13, 13, 26, 1, 10, 1, 8, 17, 17, 1, 16, 7, 19, 18, 0, 1, 28, 1, 57, 19, 23, 22, 34, 1, 25, 23, 24, 1, 41, 1, 65, 45, 29, 1, 57, 9, 68, 25, 75, 1, 39, 25, 25, 29, 35, 1, 88, 1, 37, 74, 120, 29, 37, 1, 91, 31, 24, 1, 103
Offset: 1

Views

Author

Jaroslav Krizek, Sep 07 2018

Keywords

Examples

			For n = 4; a(4) = (7 mod 1) + (7 mod 2) + (7 mod 4) = 0 + 1 + 3 = 4.
		

Crossrefs

Programs

  • Magma
    [&+[SumOfDivisors(n) mod d: d in Divisors(n)] : n in [1..1000]]
    
  • Mathematica
    a[n_] := Block[{s = DivisorSigma[1, n]}, DivisorSum[n, Mod[s, #] &]]; Array[a, 72] (* Giovanni Resta, Sep 07 2018 *)
  • PARI
    a(n) = my(sn = sigma(n)); sumdiv(n, d, sn % d); \\ Michel Marcus, Sep 07 2018
    
  • Python
    from sympy import divisors
    def a(n): divs = divisors(n); s = sum(divs); return sum(s%d for d in divs)
    print([a(n) for n in range(1, 73)]) # Michael S. Branicky, Nov 27 2021

Formula

a(A007691(n)) = 0.
a(A000040(n)) = 1.
a(A008578(n)) = tau(n) - 1.
a(n) = n for numbers 4, 45, 6048, 14421, ...

A325639 Numbers n for which A091255(n, sigma(n)) = n.

Original entry on oeis.org

1, 6, 28, 120, 312, 428, 456, 496, 504, 672, 760, 6552, 8128, 30240, 31452, 32760, 429240, 523776, 2178540, 5009850, 7505976, 23569920, 33550336, 45532800, 142990848, 186076800, 379975680
Offset: 1

Views

Author

Antti Karttunen, May 21 2019

Keywords

Comments

Numbers n for which A000203(n) = A048720(n, k) for some k. The value of k for the initial terms is: 1, 2, 2, 7, 3, 3, 6, 2, 5, 3, 3, 6, 2, 4, 6, 4, 6, 7, 4, 3, 6, 4, 2, 4, 4, 7, 7, ...
Conjecture: all terms after the initial one are even. If this is true, then there are no odd perfect numbers.
A007691(11) = 2178540 is the first term of A007691 which is not present in this sequence.

Crossrefs

Fixed points of A325632 and A325634.
Cf. A000396, A325638 (subsequences).

Programs

A341524 Number of prime factors in A017666(n), counted with multiplicity: a(n) = bigomega(n) - bigomega(gcd(n, sigma(n))).

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 3, 0, 1, 1, 1, 5, 1, 1, 2, 4, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 3, 2, 3, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 3, 6, 2, 1, 1, 2, 1, 2, 1, 4, 1, 1, 3, 1, 2, 1, 1, 4, 4, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 3, 2, 4, 1, 1, 1, 3, 2, 1, 1, 3, 1, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 0
Offset: 1

Views

Author

Antti Karttunen, Feb 17 2021

Keywords

Crossrefs

Cf. A007691 (positions of zeros).
Cf. A341608 (applied onto prime shift array A246278).

Programs

  • Mathematica
    Table[PrimeOmega[n] - PrimeOmega[GCD[n, DivisorSigma[1, n]]], {n, 1, 100}] (* Amiram Eldar, Feb 17 2021 *)
  • PARI
    A341524(n) = (bigomega(n) - bigomega(gcd(n, sigma(n))));

Formula

a(n) = A001222(A017666(n)).
a(n) = A001222(n) - A341523(n).

A353764 Numbers k for which A353749(sigma(k)) is a multiple of A353749(k), where A353749(k) = phi(k) * A064989(k), and A064989 shifts the prime factorization one step towards lower primes.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 18, 20, 24, 28, 30, 32, 40, 60, 72, 84, 90, 108, 120, 128, 200, 216, 224, 234, 252, 360, 384, 496, 600, 640, 672, 864, 936, 1080, 1120, 1152, 1170, 1488, 1800, 1920, 2016, 2176, 3200, 3360, 3456, 4320, 4464, 4680, 5148, 5600, 5760, 6048, 6528, 6552, 8128, 9600, 10080, 10880, 14976, 16800, 17280
Offset: 1

Views

Author

Antti Karttunen, May 10 2022

Keywords

Comments

Question: Are there any odd terms after the initial one? See A353789, A353796, A353797.

Crossrefs

Positions of 1's in A353762. Cf. also A353765.
Subsequence of A353759. Cf. A007691 (a subsequence).

Programs

  • Mathematica
    f[p_, e_] := (p - 1)*p^(e - 1)*If[p == 2, 1, NextPrime[p, -1]^e]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[20000], Divisible[s[DivisorSigma[1, #]], s[#]] &] (* Amiram Eldar, May 10 2022 *)
  • PARI
    A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A353749(n) = (eulerphi(n)*A064989(n));
    isA353764(n) = { my(s=sigma(n)); !(A353749(s)%A353749(n)); };
Previous Showing 61-70 of 195 results. Next