cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A232702 Sigma(2*m)/m for m such that sigma(2*m) is divisible by m (these m are in A227302).

Original entry on oeis.org

3, 4, 5, 4, 6, 4, 6, 7, 7, 4, 7, 8, 8, 6, 8, 9, 9, 7, 8, 4, 8, 5, 8, 7, 6, 8, 6, 9, 4, 5, 10, 7, 10, 8, 6, 7, 9, 8, 4, 8, 9, 8, 10, 8, 10, 11, 10, 8, 10, 10, 9, 8, 8, 9
Offset: 1

Views

Author

Alex Ratushnyak, Nov 28 2013

Keywords

Crossrefs

Programs

  • PARI
    for(n=1,10^8,s=sigma(2*n);if(s%n==0,print1(s/n,","))) \\ Ralf Stephan, Nov 30 2013

Extensions

a(30)-a(54) from Jinyuan Wang, Mar 03 2020

A007691 Multiply-perfect numbers: n divides sigma(n).

Original entry on oeis.org

1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776, 2178540, 23569920, 33550336, 45532800, 142990848, 459818240, 1379454720, 1476304896, 8589869056, 14182439040, 31998395520, 43861478400, 51001180160, 66433720320, 137438691328, 153003540480, 403031236608
Offset: 1

Views

Author

Keywords

Comments

sigma(n)/n is in A054030.
Also numbers such that the sum of the reciprocals of the divisors is an integer. - Harvey P. Dale, Jul 24 2001
Luca's solution of problem 11090, which proves that for k>1 there are an infinite number of n such that n divides sigma_k(n), does not apply to this sequence. However, it is conjectured that this sequence is also infinite. - T. D. Noe, Nov 04 2007
Numbers k such that sigma(k) is divisible by all divisors of k, subsequence of A166070. - Jaroslav Krizek, Oct 06 2009
A017666(a(n)) = 1. - Reinhard Zumkeller, Apr 06 2012
Bach, Miller, & Shallit show that this sequence can be recognized in polynomial time with arbitrarily small error by a probabilistic Turing machine; that is, this sequence is in BPP. - Charles R Greathouse IV, Jun 21 2013
Conjecture: If n is such that 2^n-1 is in A066175 then a(n) is a triangular number. - Ivan N. Ianakiev, Aug 26 2013
Conjecture: Every multiply-perfect number is practical (A005153). I've verified this conjecture for the first 5261 terms with abundancy > 2 using Achim Flammenkamp's data. The even perfect numbers are easily shown to be practical, but every practical number > 1 is even, so a weak form says every even multiply-perfect number is practical. - Jaycob Coleman, Oct 15 2013
Numbers such that A054024(n) = 0. - Michel Marcus, Nov 16 2013
Numbers n such that k(n) = A229110(n) = antisigma(n) mod n = A024816(n) mod n = A000217(n) mod n = (n(n+1)/2) mod n = A142150(n). k(n) = n/2 for even n; k(n) = 0 for odd n (for number 1 and eventually odd multiply-perfect numbers n > 1). - Jaroslav Krizek, May 28 2014
The only terms m > 1 of this sequence that are not in A145551 are m for which sigma(m)/m is not a divisor of m. Conjecture: after 1, A323653 lists all such m (and no other numbers). - Antti Karttunen, Mar 19 2021

Examples

			120 is OK because divisors of 120 are {1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120}, the sum of which is 360=120*3.
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 22.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 176.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chapter 15, pp. 82-88, Belin-Pour La Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 141-148.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 135-136.

Crossrefs

Complement is A054027. Cf. A000203, A054030.
Cf. A000396, A005820, A027687, A046060, A046061, for subsequences of terms with quotient sigma(n)/n = 2..6.
Subsequence of the following sequences: A011775, A071707, A083865, A089748 (after the initial 1), A102783, A166070, A175200, A225110, A226476, A237719, A245774, A246454, A259307, A263928, A282775, A323652, A336745, A340864. Also conjectured to be a subsequence of A005153, of A307740, and after 1 also of A295078.
Various number-theoretical functions applied to these numbers: A088843 [tau], A098203 [phi], A098204 [gcd(a(n),phi(a(n)))], A134665 [2-adic valuation], A307741 [sigma], A308423 [product of divisors], A320024 [the odd part], A134740 [omega], A342658 [bigomega], A342659 [smallest prime not dividing], A342660 [largest prime divisor].
Positions of ones in A017666, A019294, A094701, A227470, of zeros in A054024, A082901, A173438, A272008, A318996, A326194, A341524. Fixed points of A009194.
Cf. A069926, A330746 (left inverses, when applied to a(n) give n).
Cf. (other related sequences) A007539, A066135, A066961, A093034, A094467, A134639, A145551, A019278, A194771 [= 2*a(n)], A219545, A229110, A262432, A335830, A336849, A341608.

Programs

  • Haskell
    a007691 n = a007691_list !! (n-1)
    a007691_list = filter ((== 1) . a017666) [1..]
    -- Reinhard Zumkeller, Apr 06 2012
    
  • Mathematica
    Do[If[Mod[DivisorSigma[1, n], n] == 0, Print[n]], {n, 2, 2*10^11}] (* or *)
    Transpose[Select[Table[{n, DivisorSigma[-1, n]}, {n, 100000}], IntegerQ[ #[[2]] ]& ] ][[1]]
    (* Third program: *)
    Select[Range[10^6], IntegerQ@ DivisorSigma[-1, #] &] (* Michael De Vlieger, Mar 19 2021 *)
  • PARI
    for(n=1,1e6,if(sigma(n)%n==0, print1(n", ")))
    
  • Python
    from sympy import divisor_sigma as sigma
    def ok(n): return sigma(n, 1)%n == 0
    print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021

Extensions

More terms from Jud McCranie and then from David W. Wilson.
Incorrect comment removed and the crossrefs-section reorganized by Antti Karttunen, Mar 20 2021

A227470 Least k such that n divides sigma(n*k).

Original entry on oeis.org

1, 3, 2, 3, 8, 1, 4, 7, 10, 4, 43, 2, 9, 2, 8, 21, 67, 5, 37, 6, 20, 43, 137, 5, 149, 9, 34, 1, 173, 4, 16, 21, 27, 64, 76, 22, 73, 37, 6, 3, 163, 10, 257, 43, 6, 137, 281, 11, 52, 76, 67, 45, 211, 17, 109, 4, 49, 173, 353, 2, 169, 8, 32, 93, 72, 27, 401, 67
Offset: 1

Views

Author

Alex Ratushnyak, Jul 12 2013

Keywords

Comments

Theorem: a(n) always exists.
Proof: If n is a power of a prime, say n = p^a, then, by Euler's generalization of Fermat's little theorem and the multiplicative property of sigma, one can take k = x^(p^a-p^(a-1)-1) where x is a different prime from p. Similarly. if n = p^a*q^b, then take k = x^(p^a-p^(a-1)-1)*y^(q^b-q^(b-1)-1) where {x,y} are primes different from {p,q}. And so on. These k's have the desired property, and so there is always at least one candidate for the minimal k. - N. J. A. Sloane, May 01 2016

Examples

			Least k such that 9 divides sigma(9*k) is k = 10: sigma(90) = 234 = 9*26. So a(9) = 10.
Least k such that 89 divides sigma(89*k) is k = 1024: sigma(89*1024) = 184230 = 89*2070. So a(89) = 1024.
		

Crossrefs

Indices of 1's: A007691.
See A272349 for the sequence [n*a(n)]. - N. J. A. Sloane, May 01 2016

Programs

  • Maple
    A227470 := proc(n)
        local k;
        for k from 1 do
            if modp(numtheory[sigma](k*n),n) =0 then
                return k;
            end if;
        end do:
    end proc: # R. J. Mathar, May 06 2016
  • Mathematica
    lknds[n_]:=Module[{k=1},While[!Divisible[DivisorSigma[1,k*n],n],k++];k]; Array[lknds,70] (* Harvey P. Dale, Jul 10 2014 *)
  • PARI
    a227470(n) = {k=1; while(sigma(n*k)%n != 0, k++); k} \\ Michael B. Porter, Jul 15 2013

Formula

a(n) = A272349(n)/n. - R. J. Mathar, May 06 2016

A227303 Numbers k such that k divides sigma(3*k).

Original entry on oeis.org

1, 2, 4, 28, 40, 78, 90, 224, 360, 496, 546, 2016, 2184, 8128, 10080, 10920, 11880, 66528, 145236, 174592, 714240, 726180, 1571328, 4333056, 6168960, 7856640, 12065760, 15177600, 33550336, 47663616, 69521760, 80196480, 91963648, 99993600, 156854880, 459818240, 492101632
Offset: 1

Views

Author

Alex Ratushnyak, Jul 05 2013

Keywords

Comments

If k belongs to the sequence, then sigma(3*k)/k is an integer, so sigma(3*k)/(3*k) is either an integer or a third of an integer, so 3*k is either multiperfect or belongs to A160320 or A160321. - Michel Marcus, Jul 09 2013

Crossrefs

Programs

  • Mathematica
    k = 0; lst = {}; While[k < 10^11, If[ Mod[ DivisorSigma[1, 3 k], k] == 0, AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Mar 07 2021 *)
  • PARI
    isok(k) = !(sigma(3*k) % k); \\ Michel Marcus, Mar 07 2021

A232354 Numbers k that divide sigma(k^2) where sigma is the sum of divisors function (A000203).

Original entry on oeis.org

1, 39, 793, 2379, 7137, 13167, 76921, 78507, 230763, 238887, 549549, 692289, 863577, 1491633, 1672209, 2076867, 4317885, 7615179, 8329831, 10441431, 23402223, 24989493, 37776123, 53306253, 53695813, 55871145, 74968479, 83766969, 133854435, 144688401, 161087439, 189437391
Offset: 1

Views

Author

Alex Ratushnyak, Nov 22 2013

Keywords

Comments

Squarefree terms are: 1, 39, 793, 2379, 76921, 230763, 8329831, 24989493, 53695813, 161087439, ... Quotients are: 1, 61, 873, 3783, 11737, 26543, 85563, 141911, 370773, 417263, 1155561, ... - Michel Marcus, Nov 23 2013
Many terms are also in sequence A069520, cf. A232067 for the intersection of these two sequences. - M. F. Hasler, Nov 24 2013

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], Divisible[DivisorSigma[1, #^2], #] &] (* Alonso del Arte, Dec 06 2013 *)
  • PARI
    isok(n) = (sigma(n^2) % n) == 0; \\ Michel Marcus, Nov 23 2013

Formula

A065764(a(n)) mod a(n) = 0.
Showing 1-5 of 5 results.