cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 61 results. Next

A258452 Numbers n such that n!! - 512 is prime.

Original entry on oeis.org

9, 11, 21, 23, 45, 65, 79, 153, 155, 199, 361, 799, 883, 1237, 1253, 1753, 4975, 5117, 5843, 8179, 12831
Offset: 1

Views

Author

Robert Price, Nov 05 2015

Keywords

Comments

Corresponding primes are 433, 9883, 13749310063, 316234142713, ... .
a(22) > 50000.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 50000], If[#!! - 512 > 0, PrimeQ[#!! - 512]] &]
  • PARI
    for(n=1, 1e4, if (ispseudoprime(m=prod(k=0, (n-1)\2, n - 2*k) - 512), print1(n", "))) \\ Altug Alkan, Nov 06 2015

A139163 a(n) = (prime(n)!+5)/5.

Original entry on oeis.org

25, 1009, 7983361, 1245404161, 71137485619201, 24329020081766401, 5170403347776995328001, 1768352398747940390908723200001, 1644567730835584563545112576000001
Offset: 3

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

A139169 a(n)=smallest k >= 1 such that n divides prime(k)!.

Original entry on oeis.org

1, 1, 2, 3, 3, 2, 4, 3, 4, 3, 5, 3, 6, 4, 3, 4, 7, 4, 8, 3, 4, 5, 9, 3, 5, 6, 5, 4, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 3, 13, 4, 14, 5, 4, 9, 15, 4, 7, 5, 7, 6, 16, 5, 5, 4, 8, 10, 17, 3, 18, 11, 4, 5, 6, 5, 19, 7, 9, 4, 20, 4, 21, 12, 5, 8, 5, 6, 22, 4, 5, 13, 23, 4, 7, 14, 10, 5, 24, 4, 6, 9, 11, 15
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,m,Q,E,p;
      F:= ifactors(n)[2];
      m:= nops(F);
      Q:= map(t -> t[1],F);
      E:= map(t -> t[2],F);
      p:= max(Q)-1;
      do
        p:= nextprime(p);
        if andmap(i -> add(floor(p/Q[i]^j),j=1..floor(log[Q[i]](p))) >= E[i], [$1..m]) then return p fi;
      od
    end proc:
    f(1):= 2:
    map(numtheory:-pi @ f, [$1..100]); # Robert Israel, Mar 07 2018
  • Mathematica
    a = {}; Do[m = 1; While[ ! IntegerQ[Prime[m]!/n], m++ ]; AppendTo[a, m], {n, 1, 100}]; a
  • PARI
    a(n) = forprime(p=2,, if (!(p! % n), return (primepi(p)))); \\ Michel Marcus, Mar 08 2018

A139171 a(n) = smallest prime number p such that p!/n is an integer.

Original entry on oeis.org

2, 2, 3, 5, 5, 3, 7, 5, 7, 5, 11, 5, 13, 7, 5, 7, 17, 7, 19, 5, 7, 11, 23, 5, 11, 13, 11, 7, 29, 5, 31, 11, 11, 17, 7, 7, 37, 19, 13, 5, 41, 7, 43, 11, 7, 23, 47, 7, 17, 11, 17, 13, 53, 11, 11, 7, 19, 29, 59, 5, 61, 31, 7, 11, 13, 11, 67, 17, 23, 7, 71, 7, 73, 37, 11, 19, 11, 13, 79, 7, 11
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Prime equivalent of Kempner numbers A002034.
For quotients p!/n see A139170.
For indices of primes in this sequence see A139169.

Programs

  • Maple
    f:= proc(n) local F,m,Q,E,p;
      F:= ifactors(n)[2];
      m:= nops(F);
      Q:= map(t -> t[1],F);
      E:= map(t -> t[2],F);
      p:= max(Q)-1;
      do
        p:= nextprime(p);
        if andmap(i -> add(floor(p/Q[i]^j),j=1..floor(log[Q[i]](p))) >= E[i], [$1..m]) then return p fi;
      od
    end proc:
    f(1):= 2:
    map(f, [$1..100]); # Robert Israel, Mar 07 2018
  • Mathematica
    a = {}; Do[m = 1; While[ ! IntegerQ[Prime[m]!/n], m++ ]; AppendTo[a, Prime[m]], {n, 1, 100}]; a
  • PARI
    a(n) = forprime(p=2,, if (!(p! % n), return (p))); \\ Michel Marcus, Mar 08 2018

A128882 a(n) = n!! - 1.

Original entry on oeis.org

0, 0, 1, 2, 7, 14, 47, 104, 383, 944, 3839, 10394, 46079, 135134, 645119, 2027024, 10321919, 34459424, 185794559, 654729074, 3715891199, 13749310574, 81749606399, 316234143224, 1961990553599, 7905853580624, 51011754393599
Offset: 0

Views

Author

Alexander Adamchuk, Apr 18 2007

Keywords

Comments

n divides a(n-1) and a(n+1) for n = {1, 2, 8, 11, 16, 19, 23, 31, 32, 43, 64, 67, 71, ...} which include all powers of 2 except 2^2 and some odd primes of the form 4k+3 belonging to A002145.
p^2 divides a(p-1) for odd prime p = 71.
p^2 divides a(p+1) for odd prime p = 23.
a(n) is prime for n = {3, 4, 6, 8, 16, 26, 64, 82, 90, 118, 194, 214, ...} = A007749; A007749(n) = 2*A091415(n-1) for n > 1. Corresponding primes of the form n!! - 1 are listed in A117141, cf. also A093173.

Crossrefs

Programs

  • Mathematica
    Table[ n!! - 1, {n,0,35} ]

Formula

a(n) = A006882(n) - 1.

A139164 a(n) = (prime(n)!+6)/6.

Original entry on oeis.org

2, 21, 841, 6652801, 1037836801, 59281238016001, 20274183401472001, 4308669456480829440001, 1473626998956616992423936000001, 1370473109029653802954260480000001
Offset: 2

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 6)/6, {n, 2, 30}]

Extensions

Offset corrected by Georg Fischer, Apr 04 2022

A139165 a(n)=(prime(n)!+7)/7.

Original entry on oeis.org

721, 5702401, 889574401, 50812489728001, 17377871486976001, 3693145248412139520001, 1263108856248528850649088000001, 1174691236311131831103651840000001
Offset: 4

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n]! + 7)/7, {n, 4, 30}]

A256594 Numbers k such that k!*2^k + 1 is prime.

Original entry on oeis.org

0, 1, 259, 16708, 18655, 26304, 61999, 110251
Offset: 1

Views

Author

Robert Price, Apr 03 2015

Keywords

Examples

			0 is in the sequence since 0!*2^0 + 1 = 2 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..3*10^2] | IsPrime(Factorial(n)*2^n+1)]; // Vincenzo Librandi, Apr 05 2015
    
  • Mathematica
    Select[Range[0, 20000], PrimeQ[2^#*#! + 1] &]
  • PARI
    for(n=0,300,if(ispseudoprime(n!*2^n+1),print1(n,", "))) \\ Derek Orr, Apr 05 2015
    
  • Python
    from sympy import factorial, isprime
    for n in range(0,300):
        if isprime(factorial(n)*(2**n)+1):
            print(n, end=', ') # Stefano Spezia, Dec 06 2018

Formula

a(n) = A080778(n+1)/2 for n >= 2. - Amiram Eldar, Dec 06 2018

Extensions

a(6)-a(8), from the data at A080778, added by Amiram Eldar, Dec 06 2018

A257864 Numbers n such that n!! - 2^7 is prime.

Original entry on oeis.org

11, 13, 21, 47, 59, 77, 109, 129, 155, 163, 245, 337, 511, 1417, 3013, 3757, 4989, 8977, 12479, 12869
Offset: 1

Views

Author

Robert Price, May 11 2015

Keywords

Comments

a(21) > 50000. - Robert Price, May 11 2015
a(n) is odd. - Chai Wah Wu, May 12 2015

Crossrefs

Cf. A007749, A094144, A123910 (other forms of n!!-2^k)

Programs

  • Mathematica
    Select[Range[0, 50000], #!! - 128 > 0 && PrimeQ[#!! - 128] &]
  • PARI
    is(n)=ispseudoprime(prod(i=0,(n-1)\2, n-2*i)-128) \\ Charles R Greathouse IV, May 11 2015
    
  • Perl
    use ntheory ":all"; use Math::GMPz;
    sub mf2 { my($n,$P)=(shift,Math::GMPz->new(1)); $P *= $n-($_<<1) for 0..($n-1)>>1; $P; }
    for (1..100000) { say if is_prob_prime(mf2($)-128) } # _Dana Jacobsen, May 13 2015
  • Python
    from gmpy2 import is_prime, mpz
    A257864_list, g, h = [], mpz(105), mpz(128)
    for i in range(9,10**5,2):
        g *= i
        if is_prime(g-h):
            A257864_list.append(i) # Chai Wah Wu, May 12 2015
    

A265201 Numbers n such that n!!! - 3^10 is prime, where n!3 = n!!! is a triple factorial number (A007661).

Original entry on oeis.org

19, 20, 22, 26, 41, 55, 56, 152, 155, 316, 347, 383, 500, 556, 646, 656, 748, 976, 1433, 2213, 2680, 2911, 3373, 4799, 4964, 7189, 8798, 9871, 14069, 14627, 16657, 20230, 24137, 24430, 28331, 36313, 41522, 43031, 46072, 47719
Offset: 1

Views

Author

Robert Price, Dec 04 2015

Keywords

Comments

Corresponding primes are 1047511, 4129751, 24285271, 2504843351, 126757680265156951, ... .
a(41) > 50000.

Examples

			19!3 - 3^10 = 19*16*13*10*7*4*1 - 59049 = 1047511 is prime, so 19 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    MultiFactorial[n_, k_] := If[n < 1, 1, If[n < k + 1, n, n*MultiFactorial[n - k, k]]];
    Select[Range[17, 50000], PrimeQ[MultiFactorial[#, 3] - 3^10] &]
  • PARI
    tf(n) = prod(i=0, (n-1)\3, n-3*i);
    for(n=1, 1e4, if(ispseudoprime(tf(n) - 3^10), print1(n , ", "))) \\ Altug Alkan, Dec 04 2015
Previous Showing 41-50 of 61 results. Next