cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A279208 Number of analytic chord diagrams with n chords, up to symmetry.

Original entry on oeis.org

1, 2, 5, 17, 76, 499, 4132
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 2016

Keywords

Crossrefs

A177797 Number of decomposable fixed-point free involutions, also the number of disconnected chord diagrams with 2n nodes on an open string.

Original entry on oeis.org

0, 0, 1, 5, 31, 239, 2233, 24725, 318631, 4707359, 78691633, 1471482725, 30469552111, 692488851599, 17141242421353, 459033875802485, 13221994489388791, 407574126219013439, 13386292717807416673, 466636446695213384645, 17205919477720642772671, 669019022588385113932079, 27357684052927560953626393
Offset: 0

Views

Author

Frank Kuehnel, Dec 27 2010

Keywords

Comments

Line up 2n distinguishable nodes sequentially on an open string. Connect each two nodes with only one chord, there will be a (2n-1)!! variety of chord diagrams. Amongst this variety, we can classify a diagram as disconnected when it is possible to find a node index 2s with all nodes <=2s in group A and the rest in group B where none of the chords connect nodes between group A and B.
The subsequence of primes begins 5, 31, 239, 4707359, 78691633, 17141242421353, no more through a(22). - Jonathan Vos Post, Jan 31 2011

Crossrefs

Chord Diagrams: A054499, A007769.
Permutations: A001147, A000698, A003319. - Joerg Arndt

Programs

  • Mathematica
    (* derived from Joerg Arndt's PARI code *)
    f[n_] := f[n] = (2n-1)!!
    s[n_] := s[n] = f[n] - Sum[f[k] s[n - k], {k, 1, n - 1}]
    Table[f[k] - s[k], {k, 0, 22}]
    (* original brute force method *)
    GenerateDiagramsOfOrder[n_Integer /; n >= 0] := Diagrams[Range[2 n]]
    Diagrams[pool_List] := Block[{n = Count[pool, _]}, If[n <= 2, {{pool}},
      Flatten[Map[
        Flatten[
          Outer[Join, {{{pool[[1]], pool[[#]]}}},
            Diagrams[
             Function[{poolset, droppos},
               Drop[poolset, {droppos}] // Rest][pool, #]], 1], 1] &,
         Range[2, n]], 1]]]
    SelectDisconnected[diagrams_List] := Select[diagrams, IsDisconnected]
    IsDisconnected[{{}}] = False;
    IsDisconnected[pairs_List] :=
      Block[{newPairs=Map[#~Append~(#[[2]] - #[[1]]) &, pairs],
             distanceList},
        distanceList = Fold[
          ReplacePart[#1, {#2[[1]] -> #2[[3]], #2[[2]] -> -#2[[3]]}] &,
          Range[2 Length[pairs]],
          newPairs];
        Return[Length[Select[Drop[Accumulate[distanceList], -1], #<1 &]] > 0]
      ]
    Map[Length[SelectDisconnected[GenerateDiagramsOfOrder[#]]]&, Range[0,7]]
  • PARI
    f(n)=(2*n)!/n!/2^n;  \\ == (2n-1)!!
    s(n)=f(n) - sum(k=1, n-1, f(k)*s(n-k) )
    a(n)=f(n)-s(n)
    \\ Joerg Arndt
    
  • Python
    from functools import cache
    def a(n):
        @cache
        def h(n):
            if n <= 1: return 1
            return h(n - 1) * (2 * n - 1)
        @cache
        def c(n):
            if n == 0: return 1
            return h(n) - sum(h(k) * c(n - k) for k in range(1, n))
        return h(n) - c(n)
    print([a(n) for n in range(19)])  # Peter Luschny, Apr 16 2023

A018225 Number of connected chord diagrams of degree n.

Original entry on oeis.org

1, 1, 2, 6, 31, 255, 2788, 37333, 578799, 10134071, 197394232, 4231417728, 98991987830, 2510081238264, 68583045013542, 2009094843480565, 62824038815664719, 2088829704241946181, 73591470349452760456, 2738742863175749456078
Offset: 1

Views

Author

Alexander Stoimenow (stoimeno(AT)mail.informatik.hu-berlin.de)

Keywords

Programs

  • Mathematica
    Stoimenow states that a Mma package is available from his website. - N. J. A. Sloane, Jul 26 2018

Formula

a(n) = A007769(n) - A317184(n). - Sean A. Irvine, Feb 05 2019

Extensions

More terms from Sean A. Irvine, Feb 05 2019

A104255 a(n) = floor( (2n-1)!!/(2n) ).

Original entry on oeis.org

0, 0, 2, 13, 94, 866, 9652, 126689, 1914412, 32736453, 624968662, 13176422634, 304071291562, 7623501667031, 206342778454312, 5996836998828457, 186254702081260312, 6156752652130549218, 215810382437839251562, 7995774669321944270390, 312215963278285442939062
Offset: 1

Views

Author

Ralf Stephan, Mar 02 2005

Keywords

Comments

Asymptotic estimate for A007769(n).

Programs

  • Mathematica
    Table[Floor[(2n-1)!!/(2n)],{n,20}] (* Harvey P. Dale, Nov 12 2012 *)

A357442 Consider a clock face with 2*n "hours" marked around the dial; a(n) = number of ways to match the even hours to the odd hours, modulo rotations and reflections.

Original entry on oeis.org

1, 1, 3, 5, 17, 53, 260, 1466, 10915, 93196, 917898, 10015299, 119914982, 1557364352, 21797494987, 326930305166, 5230756117008, 88922108947567, 1600594738591550, 30411281088326498, 608225534389576956, 12772735698577492558
Offset: 1

Views

Author

N. J. A. Sloane, Nov 06 2022, based on an email from Barry Cipra, Oct 26 2022

Keywords

Crossrefs

Programs

  • PARI
    { a357442(n) = ( sumdiv(n,d,(n\d)!*d^(n\d)*eulerphi(d)) + n*sum(k=0,n\2,n!\k!\2^k\(n-2*k)!) + if(n%2, n*((n-1)\2)!*2^((n-1)\2) + sumdiv(n,d, eulerphi(d)*sum(k=0,n\d\2,(n\d)! \ (2*k+1)! \ ((n\d-1)\2-k)! * (d/2)^((n\d-1)\2-k) ))) )\n\4; } \\ Max Alekseyev, Nov 10 2022

Formula

See PARI code for the formula. - Max Alekseyev, Nov 10 2022

Extensions

Terms a(7) onward from Max Alekseyev, Nov 10 2022
Previous Showing 11-15 of 15 results.