A299035
a(n) = [x^n] Product_{k=1..n} 1/(1-k^k*x).
Original entry on oeis.org
1, 1, 21, 23980, 4896624249, 327969374429859111, 11123496833223144303532943536, 273486179312859032380857823231575174373792, 6620886635410516590847876477644821623913997428738363459941
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1 - k^k*x), {k, 1, n}], {x, 0, n}], {n, 0, 10}] (* Vaclav Kotesovec, Feb 02 2018 *)
A299036
a(n) = [x^n] Product_{k=1..n} 1/(1-k!*x).
Original entry on oeis.org
1, 1, 7, 381, 502789, 33572762781, 175123095782787181, 99374457734129265819664221, 8158897372191288496224413025490409437, 124778468912108975502836576328262294089846582756189
Offset: 0
-
Table[SeriesCoefficient[Product[1/(1 - k!*x), {k, 1, n}], {x, 0, n}], {n, 0, 12}] (* Vaclav Kotesovec, Feb 02 2018 *)
Original entry on oeis.org
1, 1, 63, 21120, 20585565, 44025570225, 175418438510700, 1169944052730453000, 12110024900113702687125, 183906442861089163922581875, 3923248989041777334572795737575, 113570018319217734510803494872644700, 4337118170117525113961286942555563803500
Offset: 0
-
@cached_function
def P(m, n):
x = polygen(ZZ)
if n == 0: return x^0
return expand(sum(binomial(m*n, m*k)*P(m, n-k)*x for k in (1..n)))
def A327416(n): return P(2, 2*n).list()[n]//factorial(n)
print([A327416(n) for n in range(13)])
Original entry on oeis.org
1, 1, 682, 7128576, 429120851544, 94066556834970720, 57496301859366489159040, 82247725949165261902606309120, 243263294602173417290925789755652480, 1356449073308047884259226117174893156252800, 13275987570857688650109290727617026478737341900800
Offset: 0
Original entry on oeis.org
1, 1, 8255, 2941884000, 11957867341948125, 294040106448733743008625, 30188472144950452369737153667500, 10143939867539251013312279527292897925000, 9389957475743686923255643914812959599614184703125, 21058194888200109612591474039339954750056969537259132421875
Offset: 0
A344445
Number of cycle-up-down permutations of [2n] having n cycles.
Original entry on oeis.org
1, 1, 7, 105, 2345, 69405, 2559667, 113073961, 5820788545, 342176336073, 22616620648895, 1660292619682697, 134029227728536985, 11800452870718122325, 1125324001129006580475, 115551341953019187183225, 12711056625162235880359425, 1491325482312555276046069905
Offset: 0
a(2) = 7: (1)(243), (143)(2), (142)(3), (132)(4), (12)(34), (13)(24), (14)(23).
-
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(o-1+j, u-j), j=1..u))
end:
g:= proc(n) option remember; expand(`if`(n=0, 1,
add(g(n-j)*binomial(n-1, j-1)*x*b(j-1, 0), j=1..n)))
end:
a:= n-> coeff(g(2*n), x, n):
seq(a(n), n=0..18);
-
Join[{1}, Table[Sum[2^(2*n - 2*j + 1) * StirlingS1[2*j,n] * Sum[(-1)^k * k^(2*n) / ((j+k)!*(j-k)!), {k, 0, j}], {j, Floor[n/2], n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 22 2021 *)
A348087
a(n) = [x^n] Product_{k=1..n} 1/(1 - (2*k-1) * x).
Original entry on oeis.org
1, 1, 13, 330, 12411, 618870, 38461522, 2863440580, 248440887123, 24616763946918, 2742625188929990, 339386813915985836, 46184075261030623710, 6854605372617955658940, 1101943692701420653738500, 190748265085183804327197000, 35373318817392757170821576835
Offset: 0
-
a(n) = polcoef(1/prod(k=1, n, 1-(2*k-1)*x+x*O(x^n)), n);
-
a(n) = if(n==0, 1, sum(k=0, n-1, (-1)^k*(2*k+1)^(2*n-1)*binomial(n-1, k))/((-2)^(n-1)*(n-1)!));
A351800
a(n) = [x^n] 1/Product_{j=1..n} (1 - j^3*x).
Original entry on oeis.org
1, 1, 73, 28800, 33120201, 83648533275, 393764054984212, 3103381708489548640, 37965284782803741391413, 681476650259874114533077575, 17184647574689079046814198039765, 588057239856779143071625300022102376, 26548105106818292578525347802793561068860
Offset: 0
a(2) = (1*1)^3 + (1*2)^3 + (2*2)^3 = 1 + 8 + 64 = 73.
-
b:= proc(n, k) option remember; `if`(k=0, 1,
add(b(j, k-1)*j^3, j=1..n))
end:
a:= n-> b(n$2):
seq(a(n), n=0..15);
-
Table[SeriesCoefficient[Product[1/(1 - k^3*x), {k, 1, n}], {x, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, May 17 2025 *)
A383881
a(n) = [x^n] Product_{k=1..3*n} 1/(1 - k*x).
Original entry on oeis.org
1, 6, 266, 22275, 2757118, 452329200, 92484925445, 22653141490980, 6466506598695390, 2108114165258886708, 772778072287000494520, 314641228029527540596455, 140880584836935832288402135, 68799366730032076856334789900, 36392216443342587869022660451080, 20728132932716479897744043460870000
Offset: 0
-
[&+[Abs(StirlingSecond(4*n, 3*n))]: n in [0..15]]; // Vincenzo Librandi, May 21 2025
-
Table[SeriesCoefficient[Product[1/(1-k*x), {k, 1, 3*n}], {x, 0, n}], {n, 0, 15}]
Table[StirlingS2[4*n, 3*n], {n, 0, 15}]
Table[SeriesCoefficient[(-1)^n/(Pochhammer[1 - 1/x, 3*n]*x^(3*n)), {x, 0, n}], {n, 0, 15}]
A187661
Binomial convolution of the (signless) central Stirling numbers of the first kind and the central Stirling numbers of the second kind.
Original entry on oeis.org
1, 2, 20, 369, 10192, 379850, 17930697, 1027046517, 69216504576, 5363945384274, 469658243947850, 45827641349686636, 4928867833029014503, 579101340954599901152, 73778702335232336908585, 10129059530832922239925140
Offset: 0
-
seq(sum(binomial(n,k) * abs(combinat[stirling1](2*k, k)) * combinat[stirling2](2*(n-k), n-k), k=0..n), n=0..12);
-
Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 15}]
-
makelist(sum(binomial(n,k)*abs(stirling1(2*k,k))*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
-
a(n) = sum(k=0, n, binomial(n,k)*abs(stirling(2*k, k, 1)*stirling(2*(n-k), n-k, 2))); \\ Michel Marcus, May 28 2017
Comments