cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 69 results. Next

A299035 a(n) = [x^n] Product_{k=1..n} 1/(1-k^k*x).

Original entry on oeis.org

1, 1, 21, 23980, 4896624249, 327969374429859111, 11123496833223144303532943536, 273486179312859032380857823231575174373792, 6620886635410516590847876477644821623913997428738363459941
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k^k*x), {k, 1, n}], {x, 0, n}], {n, 0, 10}] (* Vaclav Kotesovec, Feb 02 2018 *)

Formula

a(n) ~ n^(n^2). - Vaclav Kotesovec, Feb 02 2018

A299036 a(n) = [x^n] Product_{k=1..n} 1/(1-k!*x).

Original entry on oeis.org

1, 1, 7, 381, 502789, 33572762781, 175123095782787181, 99374457734129265819664221, 8158897372191288496224413025490409437, 124778468912108975502836576328262294089846582756189
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k!*x), {k, 1, n}], {x, 0, n}], {n, 0, 12}] (* Vaclav Kotesovec, Feb 02 2018 *)

Formula

From Vaclav Kotesovec, Feb 02 2018: (Start)
a(n) ~ (n!)^n.
a(n) ~ 2^(n/2) * Pi^(n/2) * n^(n*(2*n+1)/2) / exp(n^2 - 1/12). (End)

A327416 a(n) = A156289(2*n, n).

Original entry on oeis.org

1, 1, 63, 21120, 20585565, 44025570225, 175418438510700, 1169944052730453000, 12110024900113702687125, 183906442861089163922581875, 3923248989041777334572795737575, 113570018319217734510803494872644700, 4337118170117525113961286942555563803500
Offset: 0

Views

Author

Peter Luschny, Sep 14 2019

Keywords

Crossrefs

Cf. A007820 (m=1), this sequence (m=2), A327417 (m=3), A327418 (m=4).
Associated triangles: A048993 (m=1), A156289 (m=2), A291451 (m=3), A291452 (m=4).

Programs

  • SageMath
    @cached_function
    def P(m, n):
        x = polygen(ZZ)
        if n == 0: return x^0
        return expand(sum(binomial(m*n, m*k)*P(m, n-k)*x for k in (1..n)))
    def A327416(n): return P(2, 2*n).list()[n]//factorial(n)
    print([A327416(n) for n in range(13)])

A327417 a(n) = A291451(2*n, n).

Original entry on oeis.org

1, 1, 682, 7128576, 429120851544, 94066556834970720, 57496301859366489159040, 82247725949165261902606309120, 243263294602173417290925789755652480, 1356449073308047884259226117174893156252800, 13275987570857688650109290727617026478737341900800
Offset: 0

Views

Author

Peter Luschny, Sep 14 2019

Keywords

Crossrefs

Cf. A007820 (m=1), A327416 (m=2), this sequence (m=3), A327418 (m=4).
Associated triangles: A048993 (m=1), A156289 (m=2), A291451 (m=3), A291452 (m=4).

Programs

  • Sage
    # uses[P from A327416]
    def A327417(n): return P(3, 2*n).list()[n]//factorial(n)
    print([A327417(n) for n in range(11)])

A327418 a(n) = A291452(2*n, n).

Original entry on oeis.org

1, 1, 8255, 2941884000, 11957867341948125, 294040106448733743008625, 30188472144950452369737153667500, 10143939867539251013312279527292897925000, 9389957475743686923255643914812959599614184703125, 21058194888200109612591474039339954750056969537259132421875
Offset: 0

Views

Author

Peter Luschny, Sep 14 2019

Keywords

Crossrefs

Cf. A007820 (m=1), A327416 (m=2), A327417 (m=3), this sequence (m=4).
Associated triangles: A048993 (m=1), A156289 (m=2), A291451 (m=3), A291452 (m=4).

Programs

  • Sage
    # uses[P from A327416]
    def A327418(n): return P(4, 2*n).list()[n]//factorial(n)
    print([A327418(n) for n in range(10)])

A344445 Number of cycle-up-down permutations of [2n] having n cycles.

Original entry on oeis.org

1, 1, 7, 105, 2345, 69405, 2559667, 113073961, 5820788545, 342176336073, 22616620648895, 1660292619682697, 134029227728536985, 11800452870718122325, 1125324001129006580475, 115551341953019187183225, 12711056625162235880359425, 1491325482312555276046069905
Offset: 0

Views

Author

Alois P. Heinz, May 19 2021

Keywords

Comments

For the definition of cycle-up-down permutations see A186366.

Examples

			a(2) = 7: (1)(243), (143)(2), (142)(3), (132)(4), (12)(34), (13)(24), (14)(23).
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o=0, 1,
          add(b(o-1+j, u-j), j=1..u))
        end:
    g:= proc(n) option remember; expand(`if`(n=0, 1,
          add(g(n-j)*binomial(n-1, j-1)*x*b(j-1, 0), j=1..n)))
        end:
    a:= n-> coeff(g(2*n), x, n):
    seq(a(n), n=0..18);
  • Mathematica
    Join[{1}, Table[Sum[2^(2*n - 2*j + 1) * StirlingS1[2*j,n] * Sum[(-1)^k * k^(2*n) / ((j+k)!*(j-k)!), {k, 0, j}], {j, Floor[n/2], n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 22 2021 *)

Formula

a(n) = (2n)! * [x^(2n) y^n] 1/(1-sin(x))^y.
a(n) = A186366(2n,n).
a(n) ~ c * d^n * (n-1)!, where d = 7.3270710411718682766548233722838416956334898839746535623751... and c = 0.14278148012337362269164226210064788025688590260058738... - Vaclav Kotesovec, May 22 2021

A348087 a(n) = [x^n] Product_{k=1..n} 1/(1 - (2*k-1) * x).

Original entry on oeis.org

1, 1, 13, 330, 12411, 618870, 38461522, 2863440580, 248440887123, 24616763946918, 2742625188929990, 339386813915985836, 46184075261030623710, 6854605372617955658940, 1101943692701420653738500, 190748265085183804327197000, 35373318817392757170821576835
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2021

Keywords

Crossrefs

Programs

  • PARI
    a(n) = polcoef(1/prod(k=1, n, 1-(2*k-1)*x+x*O(x^n)), n);
    
  • PARI
    a(n) = if(n==0, 1, sum(k=0, n-1, (-1)^k*(2*k+1)^(2*n-1)*binomial(n-1, k))/((-2)^(n-1)*(n-1)!));

Formula

a(n) = A039755(2*n-1,n-1) for n > 0.
a(n) = (1/((-2)^(n-1) * (n-1)!)) * Sum_{k=0..n-1} (-1)^k * (2*k+1)^(2*n-1) * binomial(n-1,k) for n > 0.
a(n) ~ 2^(3*n - 1) * n^(n - 1/2) / (sqrt(Pi*(1-c)) * (2-c)^n * c^(n - 1/2) * exp(n)), where c = -LambertW(-2*exp(-2)) = -A226775 = 0.4063757399599599... - Vaclav Kotesovec, Oct 02 2021
From Seiichi Manyama, May 16 2025: (Start)
a(n) = Sum_{k=0..n} 2^k * binomial(2*n-1,k+n-1) * Stirling2(k+n-1,n-1) for n > 0.
a(n) = Sum_{k=0..n} (-2)^k * (2*n-1)^(n-k) * binomial(2*n-1,k+n-1) * Stirling2(k+n-1,n-1) for n > 0. (End)

A351800 a(n) = [x^n] 1/Product_{j=1..n} (1 - j^3*x).

Original entry on oeis.org

1, 1, 73, 28800, 33120201, 83648533275, 393764054984212, 3103381708489548640, 37965284782803741391413, 681476650259874114533077575, 17184647574689079046814198039765, 588057239856779143071625300022102376, 26548105106818292578525347802793561068860
Offset: 0

Views

Author

Alois P. Heinz, Feb 19 2022

Keywords

Examples

			a(2) = (1*1)^3 + (1*2)^3 + (2*2)^3 = 1 + 8 + 64 = 73.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, 1,
          add(b(j, k-1)*j^3, j=1..n))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..15);
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k^3*x), {k, 1, n}], {x, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, May 17 2025 *)

Formula

a(n) = Sum_{p in {1..n}^n : p_i <= p_{i+1}} Product_{j=1..n} p_j^3.
a(n) = A098436(2n-1,n-1) = A269948(2n,n).
a(n) ~ c * d^n * n^(3*n - 1/2), where d = 1.54371040458513693750053812318801418996889528987425... and c = 0.71526493063554190404119140313248864511356727815244... - Vaclav Kotesovec, May 13 2025

A383881 a(n) = [x^n] Product_{k=1..3*n} 1/(1 - k*x).

Original entry on oeis.org

1, 6, 266, 22275, 2757118, 452329200, 92484925445, 22653141490980, 6466506598695390, 2108114165258886708, 772778072287000494520, 314641228029527540596455, 140880584836935832288402135, 68799366730032076856334789900, 36392216443342587869022660451080, 20728132932716479897744043460870000
Offset: 0

Views

Author

Vaclav Kotesovec, May 13 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Abs(StirlingSecond(4*n, 3*n))]: n in [0..15]]; // Vincenzo Librandi, May 21 2025
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-k*x), {k, 1, 3*n}], {x, 0, n}], {n, 0, 15}]
    Table[StirlingS2[4*n, 3*n], {n, 0, 15}]
    Table[SeriesCoefficient[(-1)^n/(Pochhammer[1 - 1/x, 3*n]*x^(3*n)), {x, 0, n}], {n, 0, 15}]

Formula

a(n) = Stirling2(4*n,3*n).
a(n) ~ (-1)^(3*n) * 4^(4*n) * n^(n - 1/2) / (sqrt(2*Pi*(1 + w)) * exp(n) * 3^(3*n + 1/2) * w^(3*n) * (4/3 + w)^n), where w = LambertW(-4/(3*exp(4/3))).

A187661 Binomial convolution of the (signless) central Stirling numbers of the first kind and the central Stirling numbers of the second kind.

Original entry on oeis.org

1, 2, 20, 369, 10192, 379850, 17930697, 1027046517, 69216504576, 5363945384274, 469658243947850, 45827641349686636, 4928867833029014503, 579101340954599901152, 73778702335232336908585, 10129059530832922239925140
Offset: 0

Views

Author

Emanuele Munarini, Mar 12 2011

Keywords

Crossrefs

Programs

  • Maple
    seq(sum(binomial(n,k) * abs(combinat[stirling1](2*k, k)) * combinat[stirling2](2*(n-k), n-k), k=0..n), n=0..12);
  • Mathematica
    Table[Sum[Binomial[n, k]Abs[StirlingS1[2k, k]]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 15}]
  • Maxima
    makelist(sum(binomial(n,k)*abs(stirling1(2*k,k))*stirling2(2*n-2*k,n-k),k,0,n),n,0,12);
    
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*abs(stirling(2*k, k, 1)*stirling(2*(n-k), n-k, 2))); \\ Michel Marcus, May 28 2017

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * s(2*k,k) * S(2*n-2*k,n-k).
a(n) ~ m * n^n * c^(2*n) * 2^(3*n-1) / (sqrt(Pi*(c-1)*n) * exp(n) * (2*c-1)^n), where c = -LambertW(-1,-exp(-1/2)/2) = 1.75643120862616967698..., and m = Sum_{j>=0} StirlingS2(2*j,j) * (2*c-1)^j / (j! * 2^(3*j) * c^(2*j)) = 1.170003674502655133465266152119563086693466... . - Vaclav Kotesovec, May 22 2014
Previous Showing 41-50 of 69 results. Next