A346921
Expansion of e.g.f. 1 / (1 - log(1 - x)^2 / 2).
Original entry on oeis.org
1, 0, 1, 3, 17, 110, 874, 8064, 85182, 1012248, 13369026, 194245590, 3079135806, 52880064588, 978038495316, 19381794788160, 409702099828104, 9201877089355584, 218832476773294008, 5493266481129425064, 145153549897858762776, 4027310838211114515600
Offset: 0
-
nmax = 21; CoefficientList[Series[1/(1 - Log[1 - x]^2/2), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Abs[StirlingS1[k, 2]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-log(1-x)^2/2))) \\ Michel Marcus, Aug 07 2021
-
a(n) = sum(k=0, n\2, (2*k)!*abs(stirling(n, 2*k, 1))/2^k); \\ Seiichi Manyama, May 06 2022
A346922
Expansion of e.g.f. 1 / (1 + log(1 - x)^3 / 3!).
Original entry on oeis.org
1, 0, 0, 1, 6, 35, 245, 2044, 19572, 210524, 2513760, 33012276, 472963876, 7340889192, 122703087416, 2197496734224, 41979155247520, 852063971170960, 18312093589455440, 415420659953439840, 9920128280950954080, 248735658391768241280, 6533773435848445617600
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(1 + Log[1 - x]^3/3!), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Abs[StirlingS1[k, 3]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1+log(1-x)^3/3!))) \\ Michel Marcus, Aug 07 2021
-
a(n) = sum(k=0, n\3, (3*k)!*abs(stirling(n, 3*k, 1))/6^k); \\ Seiichi Manyama, May 06 2022
A354122
Expansion of e.g.f. 1/(1 + log(1 - x))^3.
Original entry on oeis.org
1, 3, 15, 102, 870, 8892, 105708, 1431168, 21722136, 365105928, 6729341832, 134915992560, 2922576142320, 68013701197920, 1692075061072800, 44810389419079680, 1258472984174461440, 37357062009383877120, 1168635883239630120960, 38424619272539153157120
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x))^3))
-
a(n) = sum(k=0, n, (k+2)!*abs(stirling(n, k, 1)))/2;
A382792
a(n) = Sum_{k=0..n} (Stirling1(n,k) * k!)^2.
Original entry on oeis.org
1, 1, 5, 76, 2392, 126676, 10057204, 1114096320, 163918005696, 30894047577216, 7254176241285504, 2075722128162164736, 710883208780304954112, 287061726161439955116288, 134961239570613490548986112, 73079781978184515947237031936, 45150931601954398539342470578176
Offset: 0
-
Table[Sum[(StirlingS1[n, k] k!)^2, {k, 0, n}], {n, 0, 16}]
Table[(n!)^2 SeriesCoefficient[1/(1 - Log[1 + x] Log[1 + y]), {x, 0, n}, {y, 0, n}], {n, 0, 16}]
-
a(n) = sum(k=0, n, (k!*stirling(n, k, 1))^2); \\ Seiichi Manyama, Apr 05 2025
A226226
Number of alignments of n points with no singleton cycles.
Original entry on oeis.org
1, 0, 1, 2, 12, 64, 470, 3828, 36456, 387840, 4603392, 60061440, 855664656, 13207470912, 219609303888, 3912940891104, 74377769483520, 1502277409668096, 32130095812624512, 725400731911792896, 17240044059713320704, 430231117562438446080, 11248105572520779755520
Offset: 0
For n=4, the a(4)=12 alignments with no singletons are: 1234, 1243, 1324, 1342, 1423, 1432, 12|34, 13|24, 14|23, 23|14, 24|13, 34|12.
- P. Flajolet and R. Segdewick, Analytic Combinatorics, Cambridge University Press, 2009, page 119
The alignments with singletons included are given by
A007840.
-
Range[0, 50]! CoefficientList[ Series[(1 + z - Log[1/(1 - z)])^(-1), {z, 0, 50}], z]
-
x='x+O('x^66); Vec(serlaplace(1/(1+x-log(1/(1-x))))) \\ Joerg Arndt, Jun 01 2013
A323339
Numerator of the sum of inverse products of parts in all compositions of n.
Original entry on oeis.org
1, 1, 3, 7, 11, 347, 3289, 1011, 38371, 136553, 4320019, 12528587, 40771123, 29346499543, 129990006917, 1927874590951, 903657004321, 437445829053473, 12456509813711881, 187206004658210129, 1974369484466728177, 1967745662306280217, 21401375717067880189
Offset: 0
1/1, 1/1, 3/2, 7/3, 11/3, 347/60, 3289/360, 1011/70, 38371/1680, 136553/3780, 4320019/75600, 12528587/138600, 40771123/285120, ... = A323339/A323340
Cf.
A000142,
A007840,
A011782,
A088305,
A177208,
A177209,
A322364,
A322365,
A322380,
A322381,
A323290,
A323291.
-
b:= proc(n) option remember;
`if`(n=0, 1, add(b(n-j)/j, j=1..n))
end:
a:= n-> numer(b(n)):
seq(a(n), n=0..25);
-
nmax = 20; Numerator[CoefficientList[Series[1/(1 + Log[1-x]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Feb 12 2024 *)
A323340
Denominator of the sum of inverse products of parts in all compositions of n.
Original entry on oeis.org
1, 1, 2, 3, 3, 60, 360, 70, 1680, 3780, 75600, 138600, 285120, 129729600, 363242880, 3405402000, 1009008000, 308756448000, 5557616064000, 52797352608000, 351982350720000, 221748880953600, 1524523556556000, 738190353700800, 13464592051502592000
Offset: 0
-
b:= proc(n) option remember;
`if`(n=0, 1, add(b(n-j)/j, j=1..n))
end:
a:= n-> denom(b(n)):
seq(a(n), n=0..25);
-
nmax = 20; Denominator[CoefficientList[Series[1/(1 + Log[1-x]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Feb 12 2024 *)
A346923
Expansion of e.g.f. 1 / (1 - log(1 - x)^4 / 4!).
Original entry on oeis.org
1, 0, 0, 0, 1, 10, 85, 735, 6839, 69804, 784580, 9680000, 130312336, 1901581968, 29895585356, 503657235900, 9051009737834, 172807817059664, 3493189152511608, 74530548004474584, 1673793045085649146, 39467836062718058100, 974939402596817961050, 25177327470510057799550
Offset: 0
-
nmax = 23; CoefficientList[Series[1/(1 - Log[1 - x]^4/4!), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Abs[StirlingS1[k, 4]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1-log(1-x)^4/4!))) \\ Michel Marcus, Aug 07 2021
-
a(n) = sum(k=0, n\4, (4*k)!*abs(stirling(n, 4*k, 1))/24^k); \\ Seiichi Manyama, May 06 2022
A346924
Expansion of e.g.f. 1 / (1 + log(1 - x)^5 / 5!).
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 15, 175, 1960, 22449, 269577, 3430790, 46480830, 671260876, 10329270952, 169125055736, 2940784282800, 54182845939104, 1055291277366108, 21674715826211532, 468366193441002564, 10624074081842024496, 252432685158931968768, 6270222495850552958004
Offset: 0
-
nmax = 23; CoefficientList[Series[1/(1 + Log[1 - x]^5/5!), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] Abs[StirlingS1[k, 5]] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 23}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1+log(1-x)^5/5!))) \\ Michel Marcus, Aug 07 2021
-
a(n) = sum(k=0, n\5, (5*k)!*abs(stirling(n, 5*k, 1))/120^k); \\ Seiichi Manyama, May 06 2022
A346978
Expansion of e.g.f. 1 / sqrt(1 + 2 * log(1 - x)).
Original entry on oeis.org
1, 1, 4, 26, 234, 2694, 37812, 626352, 11962164, 258787812, 6255195168, 167072685240, 4886611129320, 155335056242040, 5332298685827760, 196590247328769120, 7747254471910795920, 324986515253994589200, 14458392906960271354560, 679977065168639138610720
Offset: 0
-
nmax = 19; CoefficientList[Series[1/Sqrt[1 + 2 Log[1 - x]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] (2 k - 1)!!, {k, 0, n}], {n, 0, 19}]
Comments