cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A323339 Numerator of the sum of inverse products of parts in all compositions of n.

Original entry on oeis.org

1, 1, 3, 7, 11, 347, 3289, 1011, 38371, 136553, 4320019, 12528587, 40771123, 29346499543, 129990006917, 1927874590951, 903657004321, 437445829053473, 12456509813711881, 187206004658210129, 1974369484466728177, 1967745662306280217, 21401375717067880189
Offset: 0

Views

Author

Alois P. Heinz, Jan 11 2019

Keywords

Comments

Numerators of the INVERT transform of reciprocal integers.

Examples

			1/1, 1/1, 3/2, 7/3, 11/3, 347/60, 3289/360, 1011/70, 38371/1680, 136553/3780, 4320019/75600, 12528587/138600, 40771123/285120, ... = A323339/A323340
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
         `if`(n=0, 1, add(b(n-j)/j, j=1..n))
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..25);
  • Mathematica
    nmax = 20; Numerator[CoefficientList[Series[1/(1 + Log[1-x]), {x, 0, nmax}], x]] (* Vaclav Kotesovec, Feb 12 2024 *)

Formula

G.f. for fractions: 1 / (1 + log(1 - x)). - Ilya Gutkovskiy, Nov 12 2019
a(n) = numerator( A007840(n)/n! ). - Alois P. Heinz, Jan 04 2024
A323339(n)/A323340(n) ~ exp(n) / (exp(1) - 1)^(n+1). - Vaclav Kotesovec, Feb 12 2024

A177208 Numerators of exponential transform of 1/n.

Original entry on oeis.org

1, 1, 3, 17, 19, 81, 8351, 184553, 52907, 1768847, 70442753, 1096172081, 22198464713, 195894185831, 42653714271997, 30188596935106763, 20689743895700791, 670597992748852241, 71867806446352961329, 8445943795439038164379, 379371134635840861537
Offset: 0

Views

Author

Keywords

Comments

b(n) = a(n)/A177209(n) is the sum over all set partitions of [n] of the product of the reciprocals of the part sizes.
Numerators of moments of Dickman-De Bruijn distribution as shown on page 257 of Cellarosi and Sinai. [Jonathan Vos Post, Jan 07 2012]

Examples

			For n=4, there is 1 set partition with a single part of size 4, 4 with sizes [3,1], 3 with sizes [2,2], 6 with sizes [2,1,1], and 1 with sizes [1,1,1,1]; so b(4) = 1/4 + 4/(3*1) + 3/(2*2) + 6/(2*1*1) + 1/(1^4) = 1/4 + 4/3 + 3/4 + 3 + 1 = 19/4.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), pp. 228-230.
  • Knuth, Donald E., and Luis Trabb Pardo. "Analysis of a simple factorization algorithm." Theoretical Computer Science 3.3 (1976): 321-348. See Eq. (6.6) and (6.7), page 334.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1)*b(n-j)/j, j=1..n))
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..25); # Alois P. Heinz, Jan 08 2012
  • Mathematica
    b[n_] := b[n] = If[n==0, 1, Sum[Binomial[n-1, j-1]*b[n-j]/j, {j, 1, n}]]; a[n_] := Numerator[b[n]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 21 2017, after Alois P. Heinz *)
  • PARI
    Vec(serlaplace(exp(sum(n=1,30,x^n/(n*n!),O(x^31)))))

Formula

E.g.f. for fractions is exp(f(z)), where f(z) = sum(k>0, z^k/(k*k!)) = integral(0..z,(exp(t)-1)/t dt) = Ei(z) - gamma - log(z) = -Ein(-z). Here gamma is Euler's constant, and Ei and Ein are variants of the exponential integral.
Knuth & Trabb-Pardo (6.7) gives a recurrence. - N. J. A. Sloane, Nov 09 2022

A322364 Numerator of the sum of inverse products of parts in all partitions of n.

Original entry on oeis.org

1, 1, 3, 11, 7, 27, 581, 4583, 2327, 69761, 775643, 147941, 30601201, 30679433, 10928023, 6516099439, 445868889691, 298288331489, 7327135996801, 1029216937671847, 14361631943741, 837902013393451, 2766939485246012129, 274082602410356881, 835547516381094139939
Offset: 0

Views

Author

Alois P. Heinz, Dec 04 2018

Keywords

Examples

			1/1, 1/1, 3/2, 11/6, 7/3, 27/10, 581/180, 4583/1260, 2327/560, 69761/15120, 775643/151200, 147941/26400, 30601201/4989600, 30679433/4633200 ... = A322364/A322365
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) +b(n-i, min(i, n-i))/i)
        end:
    a:= n-> numer(b(n$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0||i==1, 1, b[n, i-1] + b[n-i, Min[i, n-i]]/i];
    a[n_] := Numerator[b[n, n]];
    a /@ Range[0, 30] (* Jean-François Alcover, Apr 29 2020, after Alois P. Heinz *)
  • PARI
    a(n) = {my(s=0); forpart(p=n, s += 1/vecprod(Vec(p))); numerator(s);} \\ Michel Marcus, Apr 29 2020

Formula

Limit_{n-> infinity} a(n)/(n*A322365(n)) = exp(-gamma) = A080130.

A322380 Numerator of the sum of inverse products of parts in all strict partitions of n.

Original entry on oeis.org

1, 1, 1, 5, 7, 37, 79, 173, 101, 127, 1033, 1571, 200069, 2564519, 5126711, 25661369, 532393, 431100529, 1855391, 1533985991, 48977868113, 342880481117, 342289639579, 435979161889, 1308720597671, 373092965489, 7824703695283, 24141028973, 31250466692609
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2018

Keywords

Comments

a(n)/A322381(n) = A007838(n)/A000142(n) is the probability that a random permutation of [n] has distinct cycle sizes. - Geoffrey Critzer, Feb 23 2022

Examples

			1/1, 1/1, 1/2, 5/6, 7/12, 37/60, 79/120, 173/280, 101/168, 127/210, 1033/1680, 1571/2640, 200069/332640, 2564519/4324320, 5126711/8648640, ... = A322380/A322381
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +b(n-i, min(i-1, n-i))/i))
        end:
    a:= n-> numer(b(n$2)):
    seq(a(n), n=0..30);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[i - 1, n - i]]/i]];
    a[n_] := Numerator[b[n, n]];
    a /@ Range[0, 30] (* Jean-François Alcover, Feb 25 2020, after Alois P. Heinz *)

Formula

Limit_{n->infinity} a(n)/A322381(n) = exp(-gamma) = A080130.
Sum_{n>=0} a(n)/A322381(n)*x^n = Product_{i>=1} (1 + x^i/i). - Geoffrey Critzer, Feb 23 2022

A323290 Numerator of the sum of inverse products of cycle sizes in all permutations of [n].

Original entry on oeis.org

1, 1, 3, 19, 107, 641, 51103, 1897879, 7860361, 505249081, 40865339743, 1355547261301, 244350418462637, 34907820791828741, 1949845703291363567, 1136592473036395958917, 31690844708764028510969, 2681369908698254192692979, 768531714669026186032238737
Offset: 0

Views

Author

Alois P. Heinz, Jan 09 2019

Keywords

Examples

			1/1, 1/1, 3/2, 19/6, 107/12, 641/20, 51103/360, 1897879/2520, 7860361/1680, 505249081/15120, 40865339743/151200, ... = A323290/A323291
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-j)*binomial(n-1, j-1)*(j-1)!/j, j=1..n))
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=0..20);
  • Mathematica
    nmax = 20; Numerator[CoefficientList[Series[Exp[PolyLog[2, x]], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Feb 12 2024 *)

Formula

E.g.f.: exp(polylog(2,x)) (for fractions A323290(n)/A323291(n)). - Vaclav Kotesovec, Feb 12 2024
A323290(n)/A323291(n) ~ exp(Pi^2/6) * n! / n^2. - Vaclav Kotesovec, Feb 14 2024

A365594 The denominators of a series that converges to 1/e obtained using Whittaker's Root Series Formula.

Original entry on oeis.org

3, 42, 154, 3817, 1141283, 119706444, 1396550916, 20958700652, 2359646218028, 324742403298918, 107268957934572210, 41877140987048387615, 19073758392921536694655, 10024177256513161424322680, 376301673554116445531842536, 10673126660749797308728534491
Offset: 1

Views

Author

Raul Prisacariu, Sep 10 2023

Keywords

Comments

The Whittaker's Root Series Formula is applied to 1+x-x^2/2+x^3/3-x^4/4+x^5/5-x^6/6 +..., which is 1 + the Taylor expansion of log(1+x). The series obtained after applying Whittaker's Root Series Formula: 1/e-1=(-1)/1+(1/2)/(1*3/2)+(1/12)/((3/2)*(7/3))+(1/18)/((7/3)*(11/3))+(1/20)/((11/3)*(347/60))+(563/10800)/((347/60)*(3289/360))+ ... . The series can be simplified to: 1/e=1/3+1/42+1/154+9/3817+1126/1141283+ ... . The sequence is formed by the denominators of the simplified series.
The fractions in the denominators of the non-simplified series seem to be equal to terms from A323339 divided by the corresponding terms from A323340. Thus, the Whittaker's Root Series for 1 + the Taylor expansion of log(1+x) offers an alternative method for obtaining the terms of A323339 and A323340 using the determinants of Toeplitz matrices (formed using the coefficients of 1 + the Taylor expansion of log(1+x)).

Examples

			Whittaker's Root Series Formula is applied to 1 + the Taylor expansion of log(1+x) and the terms are simplified. The sequence is formed by the denominators of the simplified terms, starting with the second term in the Whittaker's Root Series.
a(1) is the denominator of -(-1/2)/(1*det((1,-1/2),(1,1))) = (1/2)/(3/2) = 1/3.
a(2) is the denominator of -det((-1/2,1/3),(1,-1/2))/(det((1,-1/2),(1,1))*det((1,-1/2,1/3),(1,1,-1/2),(0,1,1))) = (1/12)/((3/2)*(7/3)) = 1/42.
		

Crossrefs

Cf. A068985 (1/e), A365595 (numerators), A323339, A323340.

Programs

  • Mathematica
    c[k_] := If[k < 0, 0, SeriesCoefficient[1 + Log[1 + x], {x, 0, k}]]; Table[-Det[ToeplitzMatrix[Table[c[3 - j], {j, 1, n}], Table[c[j + 1], {j, 1, n}]]] / (Det[ToeplitzMatrix[Table[c[2 - j], {j, 1, n}], Table[c[j], {j, 1, n}]]] * Det[ToeplitzMatrix[Table[c[2 - j], {j, 1, n + 1}], Table[c[j], {j, 1, n + 1}]]]), {n, 1, 20}] // Denominator (* Vaclav Kotesovec, Oct 09 2023 *)

Formula

a(n) is the denominator of the simplified fraction -det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n+1)))/(det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n)))*det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n+1)))), where c(0)=1, c(1)=1, c(2)=-1/2, c(3)=1/3, c(4)=-1/4, c(n)=(1/n)*(-1)^(n+1).c(n) is simply the coefficient of x^n in the series formed by 1+ the Taylor expansion of log(1+x).

Extensions

a(6)-a(7) corrected and extended by Vaclav Kotesovec, Oct 09 2023

A365595 The numerators of a series that converges to 1/e obtained using Whittaker's Root Series Formula.

Original entry on oeis.org

1, 1, 1, 9, 1126, 53825, 302989, 2285199, 133296721, 9731109349, 1737376806937, 372236638394027, 94229801087550639, 27818002500902930641, 591930814558449521261, 9591188150350759241842, 2816408483135723327055984, 1394771058490469072473603553, 385768133102988434073147277769
Offset: 1

Views

Author

Raul Prisacariu, Sep 10 2023

Keywords

Comments

The Whittaker's Root Series Formula is applied to 1+x-x^2/2+x^3/3-x^4/4+x^5/5-x^6/6 +..., which is 1 + the Taylor expansion of log(1+x). The series obtained after applying Whittaker's Root Series Formula: 1/e-1=(-1)/1+(1/2)/(1*3/2)+(1/12)/((3/2)*(7/3))+(1/18)/((7/3)*(11/3))+(1/20)/((11/3)*(347/60))+(563/10800)/((347/60)*(3289/360))+ ... . The series can be simplified to: 1/e=1/3+1/42+1/154+9/3817+1126/1141283+ ... . The sequence is formed by the numerators of the simplified series.
The fractions in the denominators of the non-simplified series seem to be equal to terms from A323339 divided by the corresponding terms from A323340. Thus, the Whittaker's Root Series for 1 + the Taylor expansion of log(1+x) offers an alternative method for obtaining the terms of A323339 and A323340 using the determinants of Toeplitz matrices (formed using the coefficients of 1 + the Taylor expansion of log(1+x)).

Examples

			Whittaker's Root Series Formula is applied to 1 + the Taylor expansion of log(1+x) and the terms are simplified. The sequence is formed by the numerators of the simplified terms, starting with the second term in the Whittaker's Root Series.
a(1) is the numerator of -(-1/2)/(1*det((1,-1/2),(1,1))) = (1/2)/(3/2) = 1/3.
a(2) is the numerator of -det((-1/2,1/3),(1,-1/2))/(det((1,-1/2),(1,1))*det((1,-1/2,1/3),(1,1,-1/2),(0,1,1))) = (1/12)/((3/2)*(7/3)) = 1/42.
		

Crossrefs

Cf. A068985 (1/e), A365594 (denominators), A323339, A323340.

Programs

  • Mathematica
    c[k_] := If[k < 0, 0, SeriesCoefficient[1 + Log[1 + x], {x, 0, k}]]; Table[-Det[ToeplitzMatrix[Table[c[3 - j], {j, 1, n}], Table[c[j + 1], {j, 1, n}]]] / (Det[ToeplitzMatrix[Table[c[2 - j], {j, 1, n}], Table[c[j], {j, 1, n}]]] * Det[ToeplitzMatrix[Table[c[2 - j], {j, 1, n + 1}], Table[c[j], {j, 1, n + 1}]]]), {n, 1, 20}] // Numerator (* Vaclav Kotesovec, Oct 09 2023 *)

Formula

a(n) is the numerator of the simplified fraction -det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n+1)))/(det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n)))*det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n+1)))), where c(0)=1, c(1)=1, c(2)=-1/2, c(3)=1/3, c(4)=-1/4, c(n)=(1/n)*(-1)^(n+1).c(n) is simply the coefficient of x^n in the series formed by 1+ the Taylor expansion of log(1+x).

Extensions

More terms from Vaclav Kotesovec, Oct 09 2023

A368754 a(n) = (n!)^n * [x^n] * 1/(1 - polylog(n,x)).

Original entry on oeis.org

1, 1, 5, 278, 404768, 28436662624, 151309093659896512, 86745908552613198656020224, 7184659625769578063908866060107907072, 110866279942987479997999976181870531647691458347008, 399488258540989429698770032526869852804662313023226648081962369024
Offset: 0

Views

Author

Alois P. Heinz, Jan 04 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> n!^n*coeff(series(1/(1-polylog(n, x)), x, n+1), x, n):
    seq(a(n), n=0..10);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n-j, k)/j^k, j=1..n))
        end:
    a:= n-> n!^n*b(n$2):
    seq(a(n), n=0..10);

Formula

a(n) = (n!)^n*b(n,n) with b(n,k) = Sum_{j=1..n} b(n-j,k)/j^k for n>0, b(0,k) = 1.
Showing 1-8 of 8 results.