cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 62 results. Next

A195155 Number of divisors d of n such that d-1 also divides n or d-1 = 0.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 3, 1, 4, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 6, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 5, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 5, 1, 2
Offset: 1

Views

Author

Omar E. Pol, Sep 19 2011

Keywords

Comments

First differs from A055874 at a(20).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(`if`(d=1 or irem(n, d-1)=0, 1, 0), d=divisors(n)):
    seq(a(n), n=1..200);  # Alois P. Heinz, Oct 17 2011
  • Mathematica
    d1[n_]:=Module[{d=Rest[Divisors[n]]},Count[d,?(Divisible[n,#-1]&)]+1]; Array[d1, 90] (* _Harvey P. Dale, Oct 31 2013 *)
  • Python
    from itertools import pairwise
    from sympy import divisors
    def A195155(n): return 1 if n&1 else 1+sum(1 for a, b in pairwise(divisors(n)) if a+1==b) # Chai Wah Wu, Jun 09 2025

Formula

a(n) = A000005(n) - A195150(n).
a(n) = 1 + A129308(n).
a(2n-1) = 1; a(2n) = 1 + A007862(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2. - Amiram Eldar, Dec 31 2023
a(n) <= A038548(n) <= A000005(n). - Charles R Greathouse IV, Jun 09 2025

A325335 Number of integer partitions of n with adjusted frequency depth 4 whose parts cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 1, 3, 3, 3, 5, 8, 6, 13, 12, 14, 17, 22, 17, 28, 29, 30, 38, 50, 46, 67, 64, 75, 81, 104, 99, 127, 128, 150, 155, 201, 189, 236, 244, 293, 302, 363, 372, 437, 457, 548, 547, 638, 671, 754, 809, 922, 947, 1074, 1144, 1290, 1342, 1515, 1574
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The adjusted frequency depth of an integer partition (A325280) is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The Heinz numbers of these partitions are given by A325387.

Examples

			The a(4) = 1 through a(10) = 5 partitions:
  (211)  (221)   (21111)  (2221)    (22211)    (22221)     (222211)
         (2111)           (22111)   (221111)   (2211111)   (322111)
                          (211111)  (2111111)  (21111111)  (2221111)
                                                           (22111111)
                                                           (211111111)
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#1]]&,ptn,Length[#1]>1&]]];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&fdadj[#]==4&]],{n,0,30}]

A327744 Expansion of Product_{i>=1, j>=1} 1 / (1 - x^(i*j*(j + 1)/2)).

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 17, 23, 35, 54, 77, 108, 163, 221, 309, 436, 593, 800, 1109, 1470, 1968, 2642, 3482, 4566, 6052, 7848, 10204, 13276, 17092, 21924, 28245, 35949, 45762, 58231, 73609, 92789, 117140, 146799, 183826, 229995, 286483, 356040, 442566, 547489
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Comments

Euler transform of A007862.

Crossrefs

Programs

  • Mathematica
    nmax = 43; CoefficientList[Series[Product[1/(1 - x^k)^Length[Select[Divisors[k], IntegerQ[Sqrt[8 # + 1]] &]], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d Length[Select[Divisors[d], IntegerQ[Sqrt[8 # + 1]] &]], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 43}]
    nmax = 50; CoefficientList[Series[Product[1/QPochhammer[x^(k*(k + 1)/2)], {k, 1, Sqrt[2*nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 24 2019 *)

Formula

G.f.: Product_{k>=1} 1 / (1 - x^k)^A007862(k).

A327745 Expansion of Product_{i>=1, j>=1} (1 + x^(i*j*(j + 1)/2)).

Original entry on oeis.org

1, 1, 1, 3, 3, 4, 8, 9, 11, 19, 23, 28, 42, 51, 62, 89, 108, 130, 178, 215, 260, 344, 413, 496, 639, 766, 916, 1155, 1380, 1641, 2040, 2426, 2870, 3520, 4166, 4912, 5960, 7023, 8246, 9911, 11634, 13610, 16224, 18972, 22111, 26183, 30507, 35430, 41698
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 23 2019

Keywords

Comments

Weigh transform of A007862.

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[Product[(1 + x^k)^Length[Select[Divisors[k], IntegerQ[Sqrt[8 # + 1]] &]], {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d Length[Select[Divisors[d], IntegerQ[Sqrt[8 # + 1]] &]], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 48}]
    nmax = 50; CoefficientList[Series[Product[QPochhammer[-1, x^(k*(k + 1)/2)]/2, {k, 1, Sqrt[2*nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 24 2019 *)

Formula

G.f.: Product_{k>=1} (1 + x^k)^A007862(k).

A333195 Numbers with three consecutive prime indices in arithmetic progression.

Original entry on oeis.org

8, 16, 24, 27, 30, 32, 40, 48, 54, 56, 60, 64, 72, 80, 81, 88, 96, 104, 105, 108, 110, 112, 120, 125, 128, 135, 136, 144, 150, 152, 160, 162, 168, 176, 184, 189, 192, 200, 208, 210, 216, 220, 224, 232, 238, 240, 243, 248, 250, 256, 264, 270, 272, 273, 280, 288
Offset: 1

Views

Author

Gus Wiseman, Mar 29 2020

Keywords

Comments

Also numbers whose first differences of prime indices do not form an anti-run, meaning there are adjacent equal differences.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    8: {1,1,1}          105: {2,3,4}
   16: {1,1,1,1}        108: {1,1,2,2,2}
   24: {1,1,1,2}        110: {1,3,5}
   27: {2,2,2}          112: {1,1,1,1,4}
   30: {1,2,3}          120: {1,1,1,2,3}
   32: {1,1,1,1,1}      125: {3,3,3}
   40: {1,1,1,3}        128: {1,1,1,1,1,1,1}
   48: {1,1,1,1,2}      135: {2,2,2,3}
   54: {1,2,2,2}        136: {1,1,1,7}
   56: {1,1,1,4}        144: {1,1,1,1,2,2}
   60: {1,1,2,3}        150: {1,2,3,3}
   64: {1,1,1,1,1,1}    152: {1,1,1,8}
   72: {1,1,1,2,2}      160: {1,1,1,1,1,3}
   80: {1,1,1,1,3}      162: {1,2,2,2,2}
   81: {2,2,2,2}        168: {1,1,1,2,4}
   88: {1,1,1,5}        176: {1,1,1,1,5}
   96: {1,1,1,1,1,2}    184: {1,1,1,9}
  104: {1,1,1,6}        189: {2,2,2,4}
		

Crossrefs

Anti-run compositions are counted by A003242.
Normal anti-runs of length n + 1 are counted by A005649.
Strict partitions with equal differences are A049980.
Partitions with equal differences are A049988.
These are the Heinz numbers of the partitions *not* counted by A238424.
Permutations avoiding triples in arithmetic progression are A295370.
Strict partitions avoiding triples in arithmetic progression are A332668.
Anti-run compositions are ranked by A333489.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],MatchQ[Differences[primeMS[#]],{_,x_,x_,_}]&]

A049993 a(n) is the number of arithmetic progressions of 3 or more positive integers, nondecreasing with sum <= n.

Original entry on oeis.org

0, 0, 1, 2, 3, 6, 7, 9, 13, 16, 17, 24, 25, 28, 36, 40, 41, 51, 52, 58, 68, 72, 73, 87, 91, 95, 107, 114, 115, 134, 135, 141, 155, 160, 167, 189, 190, 195, 211, 223, 224, 248, 249, 257, 282, 288, 289, 316, 320, 332, 353, 362, 363, 392, 401, 413, 436, 443, 444, 484, 485, 492, 522, 533, 543, 578
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

From Petros Hadjicostas, Sep 29 2019: (Start)
a(n) = Sum_{k = 1..n} A049992(k).
G.f.: (g.f. of A049992)/(1-x). (End)

Extensions

More terms from Petros Hadjicostas, Sep 29 2019

A195307 Where records occur in A129308 and also in A195155.

Original entry on oeis.org

1, 2, 6, 12, 60, 180, 360, 420, 840, 1260, 2520, 5040, 13860, 27720, 55440, 83160, 166320, 277200, 360360, 720720, 1081080, 2162160, 2827440, 4324320, 6126120, 12252240, 24504480, 36756720, 73513440, 147026880, 183783600, 232792560, 367567200, 465585120, 698377680
Offset: 1

Views

Author

Omar E. Pol, Oct 16 2011

Keywords

Comments

Observation: a(n) ending at 0, if 5 <= n <= 24 and possibly more.
From David A. Corneth, Apr 14 2021: (Start)
Conjecture: for each term k > 1 in the sequence there exists prime p such that k/p is in the sequence.
From the first 35 terms only a(23) = 2827440 is not in A025487.
In the list of conjectured terms, if actual terms <= 10^16 are 97-smooth and have the following property: a(n+1) = a(n) + k*gcd(a(n), a(n-1), ..., a(n-20)) setting a(n) = 1 for n < 1 then those terms are actual terms.
The conjectured terms are 41-smooth and satisfy a(n+1) = a(n) + k*gcd(a(n), a(n-1), ..., a(n-13)). (End)
From Bernard Schott, Jul 30 2022: (Start)
Equivalently, integers whose number of oblong divisors (A129308) sets a new record.
Corresponding records of number of oblong divisors are 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, ... (End)

Examples

			a(4) = 12 is in the sequence because A129308(12) = 3 is larger than any earlier value in A129308. - _Bernard Schott_, Jul 30 2022
		

Crossrefs

Extensions

More terms a(6)-a(24) from Alois P. Heinz, Oct 16 2011
a(25)-a(35) from David A. Corneth, Apr 14 2021

A281615 Expansion of Sum_{i>=1} x^(i*(i+1)/2)/(1 - x^(i*(i+1)/2)) / Product_{j>=1} (1 - x^(j*(j+1)/2)).

Original entry on oeis.org

1, 2, 4, 6, 8, 13, 17, 21, 30, 37, 44, 60, 72, 83, 107, 127, 144, 181, 210, 236, 289, 333, 371, 446, 507, 562, 664, 750, 825, 965, 1083, 1187, 1371, 1530, 1668, 1912, 2122, 2307, 2618, 2896, 3138, 3540, 3897, 4211, 4717, 5180, 5581, 6222, 6803, 7317, 8116, 8853, 9497, 10486, 11401, 12215, 13430, 14572, 15576, 17067
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 25 2017

Keywords

Comments

Total number of parts in all partitions of n into nonzero triangular numbers (A000217).
Convolution of A007294 and A007862.

Examples

			a(6) = 13 because we have [6], [3, 3], [3, 1, 1, 1], [1, 1, 1, 1, 1, 1] and 1 + 2 + 4 + 6 = 13.
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; Rest[CoefficientList[Series[Sum[x^(i (i + 1)/2)/(1 - x^(i (i + 1)/2)), {i, 1, nmax}]/Product[1 - x^(j (j + 1)/2), {j, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i>=1} x^(i*(i+1)/2)/(1 - x^(i*(i+1)/2)) / Product_{j>=1} (1 - x^(j*(j+1)/2)).
a(n) ~ exp(3*zeta(3/2)^(2/3) * (Pi*n)^(1/3)/2) * zeta(3/2)^(1/3) / (2^(3/2) * sqrt(3) * Pi^(4/3) * n^(5/6)). - Vaclav Kotesovec, Sep 15 2021

A325333 Number of integer partitions of n whose multiplicities all appear the same number of times.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 14, 19, 23, 32, 39, 50, 63, 82, 96, 125, 152, 186, 226, 271, 326, 392, 473, 552, 663, 771, 918, 1065, 1261, 1448, 1710, 1953, 2283, 2608, 3062, 3455, 4013, 4552, 5271, 5974, 6884, 7774, 8937, 10065, 11570, 12953, 14838, 16710, 18979
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Examples

			The a(0) = 1 through a(7) = 14 partitions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)       (7)
           (11)  (21)   (22)    (32)     (33)      (43)
                 (111)  (31)    (41)     (42)      (52)
                        (211)   (221)    (51)      (61)
                        (1111)  (311)    (222)     (322)
                                (2111)   (321)     (331)
                                (11111)  (411)     (421)
                                         (2211)    (511)
                                         (3111)    (2221)
                                         (21111)   (4111)
                                         (111111)  (22111)
                                                   (31111)
                                                   (211111)
                                                   (1111111)
For example, the partition (4,3,3,3,2,2,2,1) has multiplicities (1,3,3,1), and since both multiplicities 1 and 3 appear twice, (4,3,3,3,2,2,2,1) is counted under a(20).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[Sort[Length/@Split[#]]]&]],{n,0,30}]

A327629 Expansion of Sum_{k>=1} x^(k*(k + 1)/2) / (1 - x^(k*(k + 1)/2))^2.

Original entry on oeis.org

1, 2, 4, 4, 5, 9, 7, 8, 12, 11, 11, 18, 13, 14, 21, 16, 17, 27, 19, 22, 29, 22, 23, 36, 25, 26, 36, 29, 29, 50, 31, 32, 44, 34, 35, 55, 37, 38, 52, 44, 41, 65, 43, 44, 64, 46, 47, 72, 49, 55, 68, 52, 53, 81, 56, 58, 76, 58, 59, 100, 61, 62, 87, 64, 65, 100, 67, 68, 92, 77
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 19 2019

Keywords

Comments

Sum of divisors d of n such that n/d is triangular number.

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Sum[x^(k (k + 1)/2)/(1 - x^(k (k + 1)/2))^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := DivisorSum[n, # &, IntegerQ[Sqrt[8 n/# + 1]] &]; Table[a[n], {n, 1, 70}]
  • PARI
    a(n)={sumdiv(n, d, if(ispolygonal(d,3), n/d))} \\ Andrew Howroyd, Sep 19 2019
    
  • Python
    from sympy import divisors
    from sympy.ntheory.primetest import is_square
    def A327629(n): return sum(n//d for d in divisors(n,generator=True) if is_square((d<<3)+1)) # Chai Wah Wu, Jun 07 2025

Formula

a(n) = Sum_{d|n} A010054(n/d) * d.
Previous Showing 41-50 of 62 results. Next