cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 310 results. Next

A069087 Numbers m such that (1/m)*Sum_{k=1..m} core(k) > phi(m) where core(n) = A007913(n) is the squarefree part of n: the smallest number such that n*a(n) is a square and phi(n) = A000010(n) is the Euler totient function.

Original entry on oeis.org

2, 6, 12, 18, 24, 30, 36, 42, 48, 60, 66, 72, 78, 84, 90, 96, 102, 114, 120, 126, 132, 138, 144, 150, 156, 168, 174, 180, 186, 198, 204, 210, 222, 228, 234, 240, 246, 252, 258, 264, 270, 276, 282, 294, 300, 306, 312, 318, 330, 336, 342, 348, 360, 372, 378, 390
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

Equivalently, numbers m such that A069891(m) > m*phi(m).
The listed terms are all even, but there are some odd terms, including m = 111546435 = 3*5*7*11*13*17*19*23, for which A069891(m) = 4093453424286382 and m*phi(m) = 4070927302041600.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p, 1]; sqf[n_] := Times @@ (f @@@ FactorInteger[n]); seq = {}; s = 0; Do[s += sqf[n]; If[s > n*EulerPhi[n], AppendTo[seq, n]], {n, 1, 400}]; seq (* Amiram Eldar, Apr 02 2020 *)
  • PARI
    is(n)=sum(k=1,n,core(k)) > n*eulerphi(n) \\ Charles R Greathouse IV, Feb 21 2013

Extensions

Edited by Dean Hickerson, Apr 09 2002

A225882 Numbers k such that core(k) is equal to the sum of the proper square divisors of k, where core(k) = A007913(k).

Original entry on oeis.org

20, 90, 336, 650, 5440, 7371, 13000, 14762, 28730, 30240, 83810, 87296, 130682, 147420, 218400, 280370, 295240, 406875, 708122, 924482, 1397760, 1875530, 2613640, 3536000, 4881890, 4960032, 5884851, 7856640, 7893290, 8137500
Offset: 1

Views

Author

Antonio Roldán, May 19 2013

Keywords

Comments

If p is prime and p^2 + 1 squarefree, then p^2*(p^2 + 1) is in the sequence.

Examples

			13000 is a term because core(13000) = 130 = 100 + 25 + 4 + 1.
		

Crossrefs

Programs

  • PARI
    for(n=2,10^8,if(core(n)==sumdiv(n,d,d*issquare(d)),print(n)))
    
  • PARI
    ssd(f)=prod(i=1,#f[,1],(f[i,1]^(f[i,2]+2-f[i,2]%2)-1)/(f[i,1]^2-1))
    is(n)=my(f=factor(n));prod(i=1,#f[,1],f[i,1]^(f[i,2]%2))==ssd(f) && n>1 \\ Charles R Greathouse IV, May 20 2013

A249388 Put a [+] b = A(A(a) + A(b)), where A=A007913. The sequence lists consecutive row "sums" of triangle A248473, using [+].

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 2, 94, 1, 1, 1, 2, 6, 2, 17, 2, 2, 1187, 6, 2, 1, 62, 2, 56883, 14, 3, 14471, 2, 14, 3018, 34, 6, 3, 29, 67, 19, 1, 38, 528846, 9758, 14, 18278015, 163506530, 767014, 7, 2, 2611563, 2081053770, 3, 2, 2, 53654, 94, 17175330570, 2, 1612685866
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a7913[n_]:=a7913[n]=Times@@(#[[1]]^Mod[#[[2]],2])&[Transpose[FactorInteger[n]]];
    ab[x_,y_]:=ab[x,y]=a7913[a7913[x]+a7913[y]];
    Map[Fold[ab,First[#],Rest[#]]&,Table[a7913[Binomial[a7913[m],a7913[k]]],{m,0,50},{k,0,m}]] (* Peter J. C. Moses, Oct 27 2014 *)

A336641 Numbers k such that A007913(k) divides sigma(k) and A008833(k)-1 either divides A326127(k) (= sigma(k)-core(k)-k), or both are zero.

Original entry on oeis.org

6, 24, 28, 96, 120, 150, 294, 384, 496, 1014, 1536, 3276, 3750, 3780, 6144, 8128, 14406, 20328, 24576, 32760, 93750, 98304, 171366, 306180, 393216, 705894, 1241460, 1572864, 2343750, 6291456, 16380000, 24800580, 25165824, 28960854, 30387840, 33550336, 34588806, 58593750, 100663296, 165143160, 332226048, 402653184
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Comments

Numbers k such that A326128(k) = A326129(k) form a subsequence of this sequence. So far it is not known whether it contains any other terms apart from those of A000396. See comments in A326129.
Sequence is infinite because all numbers of the form 6*4^n (A002023) are present.
Question: Are there any odd terms?

Crossrefs

Cf. A000396, A002023 (subsequences).
Cf. also A336550 for a similar construction.

Programs

  • PARI
    isA336641(n) = { my(c=core(n), s=sigma(n), u=((n/c)-1)); (!(s%c) && (gcd(u,(s-c-n))==u)); };

A347119 Squarefree part of A005940(1+(3*A156552(n))): a(n) = A007913(A332449(n)).

Original entry on oeis.org

1, 1, 1, 10, 1, 1, 1, 30, 21, 1, 1, 22, 1, 1, 1, 10, 1, 10, 1, 10, 1, 1, 1, 66, 55, 1, 105, 10, 1, 1, 1, 30, 1, 1, 1, 154, 1, 1, 1, 30, 1, 1, 1, 10, 39, 1, 1, 22, 91, 21, 1, 10, 1, 30, 1, 30, 1, 1, 1, 34, 1, 1, 21, 10, 1, 1, 1, 10, 1, 1, 1, 462, 1, 1, 21, 10, 1, 1, 1, 10, 21, 1, 1, 22, 1, 1, 1, 30, 1, 22, 1, 10
Offset: 1

Views

Author

Antti Karttunen, Aug 22 2021

Keywords

Crossrefs

Cf. A000290, A005117 (positions of 1's), A005940, A007913, A156552, A332449, A347120.

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A332449(n) = A005940(1+(3*A156552(n)));
    A347119(n) = core(A332449(n));

Formula

a(n) = A007913(A332449(n)).
a(n) = A332449(n) / A000290(A347120(n)).

A248473 Triangle of numbers b(i,j) = A(binomial(A(i), A(j))), where A = A007913, with the convention that A(0)=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 1, 0, 0, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 5, 6, 6, 1, 1, 7, 21, 35, 7, 21, 7, 1, 1, 2, 1, 0, 2, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 10, 5, 30, 10, 7, 210, 30, 5, 10, 1, 1, 11, 55, 165, 11, 462, 462, 330, 55, 11, 11, 1
Offset: 0

Views

Author

Keywords

Comments

By definition, all terms are squarefree (A005117).

Examples

			For i=8, j=4, we have A(8)=2, A(4)=1, hence b(8,4) = A(binomial(2,1)) = 2.
Triangle begins
1
1   1
1   2   1
1   3   3   1
1   1   0   0   1
1   5  10  10   5   1
1   6  15   5   6   6   1
1   7  21  35   7  21   7   1
1   2   1   0   2   0   0   0   1
1   1   0   0   1   0   0   0   0   1
1  10   5  30  10   7 210  30   5  10  1
..........................................
		

Crossrefs

Programs

  • Mathematica
    a7913[n_]:=a7913[n]=Times@@(#[[1]]^Mod[#[[2]],2])&[Transpose[FactorInteger[n]]];
    Flatten[Table[a7913[Binomial[a7913[m],a7913[k]]],{m,0,10},{k,0,m}]] (* Peter J. C. Moses, Oct 27 2014 *)

A069186 Numbers n such that core(n)=floor(sqrt(n)), where core(x)=A007913(x) is the squarefree part of x and floor(sqrt(x))=A000196(x).

Original entry on oeis.org

1, 8, 12, 63, 224, 240, 575, 1224, 1260, 2303, 3968, 6399, 14399, 20448, 20592, 28223, 38024, 38220, 50175, 65024, 65280, 82943, 104328, 104652, 129599, 159200, 159600, 193599, 233288, 233772, 278783, 330624, 389375, 455624
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2002

Keywords

Comments

Apart from 1, numbers of the form x*y^2 for y >= 2, where x is squarefree and is either y^2-2 or y^2-1. - Robert Israel, Apr 11 2019

Crossrefs

Programs

  • Maple
    select(numtheory:-issqrfree, [1, seq(seq(b^2+j,j=-2..-1),b=2..100)]); # Robert Israel, Apr 11 2019
  • PARI
    isok(n) = core(n) == sqrtint(n); \\ Michel Marcus, Apr 12 2019

Extensions

Name edited by Robert Israel, Apr 12 2019

A069189 Numbers k such that A007913(k) < sqrt(k).

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 25, 27, 32, 36, 45, 48, 49, 50, 54, 63, 64, 72, 75, 80, 81, 96, 98, 100, 108, 112, 121, 125, 128, 144, 147, 150, 160, 162, 169, 175, 176, 180, 192, 196, 200, 208, 216, 224, 225, 240, 242, 243, 245, 250, 252, 256, 275, 288, 289, 294, 300, 320
Offset: 1

Views

Author

Benoit Cloitre, Apr 10 2002

Keywords

Comments

Equivalently, numbers k whose squarefree part, A007913(k), is smaller than their square part, A008833(k). - Peter Munn, Mar 26 2021

Crossrefs

Subsequence of A048098.
A116882 is a near equivalent with respect to a number's odd part.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p, 1]; sqf[n_] := Times @@ (f @@@ FactorInteger[n]); Select[Range[320], sqf[#] < Sqrt[#] &] (* Amiram Eldar, Apr 02 2020 *)
  • PARI
    for(n=1,200,if(core(n)
    				

A069260 a(n) = core(1)*core(2)*...*core(n) where core(n) is the squarefree part of n (A007913).

Original entry on oeis.org

1, 2, 6, 6, 30, 180, 1260, 2520, 2520, 25200, 277200, 831600, 10810800, 151351200, 2270268000, 2270268000, 38594556000, 77189112000, 1466593128000, 7332965640000, 153992278440000, 3387830125680000, 77920092890640000, 467520557343840000, 467520557343840000
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2002

Keywords

Comments

A "core" analog of n! (A000142) - might be called a "c-factorial" (see formula). - Vladimir Shevelev, Oct 22 2014

Crossrefs

Programs

  • Mathematica
    core[n_] := Times @@ (First[#]^Mod[Last[#], 2] & /@ FactorInteger[n]); FoldList[Times, 1, core /@ Range[2, 23]] (* Amiram Eldar, Sep 05 2020 *)
  • PARI
    a(n) = prod(i=1, n, core(i)); \\ Michel Marcus, Aug 09 2013

Formula

Let p_n = prime(n). a(n) = n!^(c) = p_1^b_1*p_2^b_2*...*p_k^b_k, where p_k is maximal prime <= n and b_i = floor(n/p_i)- floor(n/p_i^2) + floor(n/p_i^3)-..., i.e., for exponents of primes of c-factorial we have an alternating sum, instead of the similar sum for exponents of primes for n! - Vladimir Shevelev, Oct 22 2014

Extensions

More terms from Amiram Eldar, Sep 05 2020

A074786 Numbers k such that phi(k) = Sum_{d|k} core(d) where core(x) is the squarefree part of x (A007913).

Original entry on oeis.org

1, 99, 1080, 1836, 4743, 5670, 7644, 8307, 14384, 14784, 15225, 15824, 16065, 20300, 21584, 25704, 29760, 34544, 46816, 71568, 94240, 128412, 169290, 264160, 266266, 312480, 331731, 364941, 404550, 445050, 454575, 458052, 479655, 497781
Offset: 1

Views

Author

Benoit Cloitre, Sep 07 2002

Keywords

Comments

Numbers k such that A000010(k) = A069088(k). - Amiram Eldar, Apr 28 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p+1)*(e+1)/2, (p+1)*e/2 + 1] / ((p-1)*p^(e-1)); q[1] = True; q[n_] := Times @@ f @@@ FactorInteger[n] == 1; Select[Range[500000], q] (* Amiram Eldar, Apr 28 2025 *)
  • PARI
    isok(n) = eulerphi(n) == sumdiv(n, d, core(d)); \\ Michel Marcus, Aug 09 2013
    
  • PARI
    isok(k) = {my(f = factor(k)); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(e % 2, (p+1)*(e+1)/2, (p+1)*e/2 + 1) / ((p-1)*p^(e-1))) == 1;} \\ Amiram Eldar, Apr 28 2025

Extensions

More terms from Michel Marcus, Aug 09 2013
Previous Showing 11-20 of 310 results. Next