cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 282 results. Next

A279944 Number of positions in the free pure symmetric multifunction in one symbol with j-number n.

Original entry on oeis.org

1, 3, 5, 5, 7, 7, 9, 4, 7, 9, 11, 6, 9, 11, 13, 7, 8, 11, 13, 15, 9, 10, 13, 15, 9, 17, 6, 11, 12, 15, 17, 6, 11, 19, 8, 9, 13, 14, 17, 19, 8, 13, 21, 10, 11, 15, 16, 19, 11, 21, 10, 15, 23, 12, 13, 17, 18, 21, 13, 23, 12, 17, 25, 7, 14, 15, 19, 20, 23, 15, 25, 14, 19, 27, 9, 16, 17, 21, 22, 25, 9, 17, 27, 16, 21, 29, 11, 18, 19, 23, 24, 27, 11, 19, 29, 18, 23, 31, 13, 11
Offset: 1

Views

Author

Gus Wiseman, Dec 24 2016

Keywords

Comments

A free pure symmetric multifunction in one symbol f in PSM(x) is either (case 1) f = the symbol x, or (case 2) f = an expression of the form h[g_1,...,g_k] where h is in PSM(x), each of the g_i for i=1..(k>0) is in PSM(x), and for i < j we have g_i <= g_j under a canonical total ordering of PSM(x), such as the Mathematica ordering of expressions. For a positive integer n we define a free pure symmetric multifunction j(n) by: j(1)=x; j(n>1) = j(h)[j(g_1),...,j(g_k)] where n = r(h)^(p(g_1)*...*p(g_k)-1). Here r(n) is the n-th number that is not a perfect power (A007916) and p(n) is the n-th prime number (A000040). See example. Then a(n) is the number of brackets [...] plus the number of x's in j(n).

Examples

			The first 20 free pure symmetric multifunctions in x are:
j(1)  = j(1)            = x
j(2)  = j(1)[j(1)]      = x[x]
j(3)  = j(2)[j(1)]      = x[x][x]
j(4)  = j(1)[j(2)]      = x[x[x]]
j(5)  = j(3)[j(1)]      = x[x][x][x]
j(6)  = j(4)[j(1)]      = x[x[x]][x]
j(7)  = j(5)[j(1)]      = x[x][x][x][x]
j(8)  = j(1)[j(1),j(1)] = x[x,x]
j(9)  = j(2)[j(2)]      = x[x][x[x]]
j(10) = j(6)[j(1)]      = x[x[x]][x][x]
j(11) = j(7)[j(1)]      = x[x][x][x][x][x]
j(12) = j(8)[j(1)]      = x[x,x][x]
j(13) = j(9)[j(1)]      = x[x][x[x]][x]
j(14) = j(10)[j(1)]     = x[x[x]][x][x][x]
j(15) = j(11)[j(1)]     = x[x][x][x][x][x][x]
j(16) = j(1)[j(3)]      = x[x[x][x]]
j(17) = j(12)[j(1)]     = x[x,x][x][x]
j(18) = j(13)[j(1)]     = x[x][x[x]][x][x]
j(19) = j(14)[j(1)]     = x[x[x]][x][x][x][x]
j(20) = j(15)[j(1)]     = x[x][x][x][x][x][x][x].
		

Crossrefs

Cf. A279984 (numbers j(n)[x]=j(prime(n))), A277576 (numbers j(n)=x[x][x][x]...), A058891 (numbers j(n)=x[x,...,x]), A279969 (numbers j(n)=x[x[...[x]]]).

Programs

  • Mathematica
    nn=100;
    radQ[n_]:=If[n===1,False,SameQ[GCD@@FactorInteger[n][[All,2]],1]];
    rad[n_]:=rad[n]=If[n===0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
    Set@@@Array[radPi[rad[#]]==#&,nn];
    jfac[n_]:=With[{g=GCD@@FactorInteger[n+1][[All,2]]},JIX[radPi[Power[n+1,1/g]],Flatten[Cases[FactorInteger[g+1],{p_,k_}:>ConstantArray[PrimePi[p],k]]]]];
    diwt[n_]:=If[n===1,1,Apply[1+diwt[#1]+Total[diwt/@#2]&,jfac[n-1]]];
    Array[diwt,nn]

Formula

a(A007916(h)^(A000040(g_1)*...*A000040(g_k)-1)) = 1 + a(h) + a(g_1) + ... + a(g_k).

A336417 Number of perfect-power divisors of superprimorials A006939.

Original entry on oeis.org

1, 1, 2, 5, 15, 44, 169, 652, 3106, 15286, 89933, 532476, 3698650, 25749335, 204947216, 1636097441, 14693641859, 132055603656, 1319433514898, 13186485900967, 144978145009105, 1594375302986404, 19128405558986057, 229508085926717076, 2983342885319348522
Offset: 0

Views

Author

Gus Wiseman, Jul 24 2020

Keywords

Comments

A number is a perfect power iff it is 1 or its prime exponents (signature) are not relatively prime.
The n-th superprimorial number is A006939(n) = Product_{i = 1..n} prime(i)^(n - i + 1).

Examples

			The a(0) = 1 through a(4) = 15 divisors:
  1  2  12  360  75600
-------------------------
  1  1   1    1      1
         4    4      4
              8      8
              9      9
             36     16
                    25
                    27
                    36
                   100
                   144
                   216
                   225
                   400
                   900
                  3600
		

Crossrefs

A000325 is the uniform version.
A076954 can be used instead of A006939.
A336416 gives the same for factorials instead of superprimorials.
A000217 counts prime power divisors of superprimorials.
A000961 gives prime powers.
A001597 gives perfect powers, with complement A007916.
A006939 gives superprimorials or Chernoff numbers.
A022915 counts permutations of prime indices of superprimorials.
A091050 counts perfect power divisors.
A181818 gives products of superprimorials.
A294068 counts factorizations using perfect powers.
A317829 counts factorizations of superprimorials.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    perpouQ[n_]:=Or[n==1,GCD@@FactorInteger[n][[All,2]]>1];
    Table[Length[Select[Divisors[chern[n]],perpouQ]],{n,0,5}]
  • PARI
    a(n) = {1 + sum(k=2, n, moebius(k)*(1 - prod(i=1, n, 1 + i\k)))} \\ Andrew Howroyd, Aug 30 2020

Formula

a(n) = A091050(A006939(n)).
a(n) = 1 + Sum_{k=2..n} mu(k)*(1 - Product_{i=1..n} 1 + floor(i/k)). - Andrew Howroyd, Aug 30 2020

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 30 2020

A367579 Irregular triangle read by rows where row n is the multiset multiplicity kernel (MMK) of the multiset of prime indices of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 1, 5, 1, 2, 6, 1, 1, 2, 2, 1, 7, 1, 2, 8, 1, 3, 2, 2, 1, 1, 9, 1, 2, 3, 1, 1, 2, 1, 4, 10, 1, 1, 1, 11, 1, 2, 2, 1, 1, 3, 3, 1, 1, 12, 1, 1, 2, 2, 1, 3, 13, 1, 1, 1, 14, 1, 5, 2, 3, 1, 1, 15, 1, 2, 4, 1, 3, 2, 2, 1, 6, 16, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 25 2023

Keywords

Comments

Row n = 1 is empty.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}.
Note: I chose the word 'kernel' because, as with A007947 and A304038, MMK(m) is constructed using the same underlying elements as m and has length equal to the number of distinct elements of m. However, it is not necessarily a submultiset of m.

Examples

			The first 45 rows:
     1: {}      16: {1}       31: {11}
     2: {1}     17: {7}       32: {1}
     3: {2}     18: {1,2}     33: {2,2}
     4: {1}     19: {8}       34: {1,1}
     5: {3}     20: {1,3}     35: {3,3}
     6: {1,1}   21: {2,2}     36: {1,1}
     7: {4}     22: {1,1}     37: {12}
     8: {1}     23: {9}       38: {1,1}
     9: {2}     24: {1,2}     39: {2,2}
    10: {1,1}   25: {3}       40: {1,3}
    11: {5}     26: {1,1}     41: {13}
    12: {1,2}   27: {2}       42: {1,1,1}
    13: {6}     28: {1,4}     43: {14}
    14: {1,1}   29: {10}      44: {1,5}
    15: {2,2}   30: {1,1,1}   45: {2,3}
		

Crossrefs

Indices of empty and singleton rows are A000961.
Row lengths are A001221.
Depends only on rootless base A052410, see A007916.
Row minima are A055396.
Rows have A071625 distinct elements.
Indices of constant rows are A072774.
Indices of strict rows are A130091.
Rows have Heinz numbers A367580.
Row sums are A367581.
Row maxima are A367583, opposite A367587.
Index of first row with Heinz number n is A367584.
Sorted row indices of first appearances are A367585.
Indices of rows of the form {1,1,...} are A367586.
Agrees with sorted prime signature at A367683, counted by A367682.
A submultiset of prime indices at A367685, counted by A367684.
A007947 gives squarefree kernel.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 lists prime multiplicities (prime signature), sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, reversed A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.
A367582 counts partitions by sum of multiset multiplicity kernel.

Programs

  • Mathematica
    mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
    Table[mmk[PrimePi/@Join@@ConstantArray@@@If[n==1, {},FactorInteger[n]]], {n,100}]

Formula

For all positive integers n and k, row n^k is the same as row n.

A375703 Minimum of the n-th maximal run of adjacent (increasing by one at a time) non-perfect-powers.

Original entry on oeis.org

2, 5, 10, 17, 26, 28, 33, 37, 50, 65, 82, 101, 122, 126, 129, 145, 170, 197, 217, 226, 244, 257, 290, 325, 344, 362, 401, 442, 485, 513, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1001, 1025, 1090, 1157, 1226, 1297, 1332, 1370, 1445, 1522, 1601, 1682, 1729
Offset: 1

Views

Author

Gus Wiseman, Aug 28 2024

Keywords

Comments

Non-perfect-powers A007916 are numbers without a proper integer root.

Examples

			The list of all non-perfect-powers, split into runs, begins:
   2   3
   5   6   7
  10  11  12  13  14  15
  17  18  19  20  21  22  23  24
  26
  28  29  30  31
  33  34  35
  37  38  39  40  41  42  43  44  45  46  47  48
Row n has length A375702, first a(n), last A375704, sum A375705.
		

Crossrefs

For prime numbers we have A045344.
For nonsquarefree numbers we have A053806, anti-runs A373410.
For nonprime numbers we have A055670, anti-runs A005381.
For squarefree numbers we have A072284, anti-runs A373408.
The anti-run version is A216765 (same as A375703 with 2 exceptions).
For non-prime-powers we have A373673, anti-runs A120430.
For prime-powers we have A373676, anti-runs A373575.
For runs of non-perfect-powers (A007916):
- length: A375702 = A053289(n+1) - 1.
- first: A375703 (this)
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.
A046933 counts composite numbers between primes.
A375736 gives lengths of anti-runs of non-prime-powers, sums A375737.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Min/@Split[Select[Range[100],radQ],#1+1==#2&]//Most
    - or -
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Select[Range[100],radQ[#]&&!radQ[#-1]&]

Formula

Numbers k > 0 such that k-1 is a perfect power (A001597) but k is not.

A375704 Maximum of the n-th maximal run of adjacent (increasing by one at a time) non-perfect-powers.

Original entry on oeis.org

3, 7, 15, 24, 26, 31, 35, 48, 63, 80, 99, 120, 124, 127, 143, 168, 195, 215, 224, 242, 255, 288, 323, 342, 360, 399, 440, 483, 511, 528, 575, 624, 675, 728, 783, 840, 899, 960, 999, 1023, 1088, 1155, 1224, 1295, 1330, 1368, 1443, 1520, 1599, 1680, 1727, 1763
Offset: 1

Views

Author

Gus Wiseman, Aug 29 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.
Also numbers k > 0 such that k is a perfect power (A001597) but k+1 is not.

Examples

			The list of all non-perfect-powers, split into runs, begins:
   2   3
   5   6   7
  10  11  12  13  14  15
  17  18  19  20  21  22  23  24
  26
  28  29  30  31
  33  34  35
  37  38  39  40  41  42  43  44  45  46  47  48
Row n begins with A375703(n), ends with a(n), adds up to A375705(n), and has length A375702(n).
		

Crossrefs

For nonprime numbers: A006093, min A055670, anti-runs A068780, min A005381.
For prime numbers we have A045344.
Inserting 8 after 7 gives A045542.
For nonsquarefree numbers we have A072284(n) + 1, anti-runs A068781.
For squarefree numbers we have A373415, anti-runs A007674.
For prime-powers we have A373674 (min A373673), anti-runs A006549 (A120430).
Non-prime-powers: A373677 (min A373676), anti-runs A255346 (min A373575).
The anti-run version is A375739.
A001597 lists perfect-powers, differences A053289.
A046933 counts composite numbers between primes.
A375736 gives lengths of anti-runs of non-prime-powers, sums A375737.
For runs of non-perfect-powers (A007916):
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (this) (same as A045542 with 8 removed)
- sum: A375705

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Max/@Split[Select[Range[100],radQ],#1+1==#2&]//Most
    - or -
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Select[Range[100],radQ[#]&&!radQ[#+1]&]

Formula

For n > 2 we have a(n) = A045542(n+1).

A375736 Length of the n-th maximal anti-run of adjacent (increasing by more than one at a time) non-perfect-powers.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2024

Keywords

Comments

Non-perfect-powers (A007916) are numbers with no proper integer roots.
An anti-run of a sequence is an interval of positions at which consecutive terms differ by more than one.

Examples

			The initial anti-runs are the following, whose lengths are a(n):
  (2)
  (3,5)
  (6)
  (7,10)
  (11)
  (12)
  (13)
  (14)
  (15,17)
  (18)
  (19)
  (20)
  (21)
  (22)
  (23)
  (24,26,28)
		

Crossrefs

For squarefree numbers we have A373127, runs A120992.
For nonprime numbers we have A373403, runs A176246.
For nonsquarefree numbers we have A373409, runs A053797.
For prime-powers we have A373576, runs A373675.
For non-prime-powers (exclusive) we have A373672, runs A110969.
For runs instead of anti-runs we have A375702.
For anti-runs of non-perfect-powers:
- length: A375736 (this)
- first: A375738
- last: A375739
- sum: A375737
For runs of non-perfect-powers:
- length: A375702
- first: A375703
- last: A375704
- sum: A375705
A001597 lists perfect-powers, differences A053289.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Length/@Split[Select[Range[100],radQ],#1+1!=#2&]//Most

A377283 Nonnegative integers k such that either k = 0 or there is a perfect power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

0, 2, 4, 6, 9, 11, 15, 18, 22, 25, 30, 31, 34, 39, 44, 47, 48, 53, 54, 61, 66, 68, 72, 78, 85, 92, 97, 99, 105, 114, 122, 129, 137, 146, 154, 162, 168, 172, 181, 191, 200, 210, 217, 219, 228, 240, 251, 263, 269, 274, 283, 295, 306, 309, 319, 327, 329, 342, 357
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.

Examples

			The first number-line below shows the perfect powers. The second shows each positive integer k at position prime(k).
-1-----4-------8-9------------16----------------25--27--------32------36----
===1=2===3===4=======5===6=======7===8=======9==========10==11==========12==
		

Crossrefs

A version for prime powers is A377057, exclusive A377287.
A version for squarefree numbers is A377431.
Positions of positive terms in A377432 (counts perfect powers between primes).
The case of a unique choice is A377434 (a subset).
The complement (no choices) is A377436.
The case of at least two choices is A377466 (a subset).
Positions of last appearances in A378249.
First-differences are A378251.
This is A378365 - 1, union of A378356 - 1.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A131605 lists perfect powers that are not prime powers.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[0,100],#==0||Length[Select[Range[Prime[#]+1,Prime[#+1]-1],perpowQ]]>0&]

A106543 Composite numbers that are not perfect powers.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106
Offset: 1

Views

Author

Alexandre Wajnberg, May 08 2005

Keywords

Crossrefs

Intersection of A002808 and A007916.

Programs

  • Mathematica
    perfPQ[n_]:=GCD@@FactorInteger[n][[All,2]]>1; Select[Range[110], CompositeQ[ #] && !perfPQ[#]&] (* Harvey P. Dale, Oct 10 2017 *)
  • PARI
    lista(nn)=forcomposite(i=1, nn, if (! ispower(i), print1(i, ", "));); \\ Michel Marcus, Jun 27 2013
    
  • PARI
    is(n)=!isprime(n) && !ispower(n) && n>1 \\ Charles R Greathouse IV, Oct 19 2015
    
  • Python
    from sympy import primepi, mobius, integer_nthroot
    def A106543(n):
        def f(x): return int(n+1+primepi(x)-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Oct 12 2024
  • SageMath
    def A106543_list(n) : return [k for k in (2..n) if not k.is_prime() and not k.is_perfect_power()]
    A106543_list(106) # Terry D. Grant, Jul 17 2016
    

Formula

a(n) = n + O(n/log n). - Charles R Greathouse IV, Oct 03 2011

A367581 Sum of the multiset multiplicity kernel (in which each multiplicity becomes the least element of that multiplicity) of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 2, 5, 3, 6, 2, 4, 1, 7, 3, 8, 4, 4, 2, 9, 3, 3, 2, 2, 5, 10, 3, 11, 1, 4, 2, 6, 2, 12, 2, 4, 4, 13, 3, 14, 6, 5, 2, 15, 3, 4, 4, 4, 7, 16, 3, 6, 5, 4, 2, 17, 5, 18, 2, 6, 1, 6, 3, 19, 8, 4, 3, 20, 3, 21, 2, 5, 9, 8, 3, 22, 4, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Nov 28 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}. As an operation on multisets, MMK is represented by A367579, and as an operation on their Heinz numbers, it is represented by A367580.

Examples

			The multiset multiplicity kernel of {1,2,2,3} is {1,1,2}, so a(90) = 4.
		

Crossrefs

Positions of 1's are A000079 without 1.
Positions of first appearances are A008578.
Depends only on rootless base A052410, see A007916, A052409.
The triangle A367579 has these as row sums, ranks A367580.
The triangle for this rank statistic is A367582.
For maximum instead of sum we have A367583, opposite A367587.
A007947 gives squarefree kernel.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, reverse A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.

Programs

  • Mathematica
    mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
    Table[Total[mmk[PrimePi/@Join@@ConstantArray@@@FactorInteger[n]]], {n,100}]

Formula

a(n^k) = a(n) for all positive integers n and k.
a(n) = A056239(A367580(n)).
If n is squarefree, a(n) = A055396(n)*A001222(n).

A375713 Indices of consecutive non-prime-powers (A361102) differing by 1. Numbers k such that the k-th and (k+1)-th non-prime-powers differ by just one.

Original entry on oeis.org

5, 8, 9, 15, 16, 17, 19, 20, 23, 24, 27, 28, 30, 31, 32, 33, 36, 38, 40, 41, 44, 45, 46, 47, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 64, 67, 68, 71, 72, 74, 75, 76, 77, 78, 79, 81, 82, 85, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 103, 104, 105, 106
Offset: 1

Views

Author

Gus Wiseman, Sep 02 2024

Keywords

Examples

			The initial non-prime-powers are 1, 6, 10, 12, 14, 15, 18, 20, 21, which first increase by one after the fifth and eighth terms.
		

Crossrefs

The inclusive version is a(n) - 1.
For prime-powers inclusive (A000961) we have A375734, differences A373671.
For nonprime numbers (A002808) we have A375926, differences A373403.
For prime-powers exclusive (A246655) we have A375734(n+1) + 1.
First differences are A373672.
Positions of 1's in A375708.
For non-perfect-powers we have A375740.
Prime-powers inclusive:
- terms: A000961
- differences: A057820
Non-prime-powers inclusive:
- terms: A361102
- differences: A375708
A000040 lists all of the primes, differences A001223.
A007916 lists non-perfect-powers, differences A375706.

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100],!PrimePowerQ[#]&]],1]

Formula

A361102(k+1) - A361102(k) = 1.
Previous Showing 91-100 of 282 results. Next