cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 86 results. Next

A284293 Numbers using only digits 1 and 6.

Original entry on oeis.org

1, 6, 11, 16, 61, 66, 111, 116, 161, 166, 611, 616, 661, 666, 1111, 1116, 1161, 1166, 1611, 1616, 1661, 1666, 6111, 6116, 6161, 6166, 6611, 6616, 6661, 6666, 11111, 11116, 11161, 11166, 11611, 11616, 11661, 11666, 16111, 16116, 16161, 16166, 16611, 16616
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Comments

Product of digits of n is a power of 6; subsequence of A276038.
Prime terms are in A020454.

Crossrefs

Cf. Numbers using only digits 1 and k for k = 0 and k = 2 - 9: A007088 (k = 0), A007931 (k = 2), A032917 (k = 3), A032822 (k = 4) , A276037 (k = 5), this sequence (k = 6), A276039 (k = 7), A213084 (k = 8), A284294 (k = 9).

Programs

  • Magma
    [n: n in [1..20000] | Set(IntegerToSequence(n, 10)) subset {1, 6}];
    
  • Mathematica
    Join @@ (FromDigits /@ Tuples[{1,6}, #] & /@ Range[5]) (* Giovanni Resta, Mar 25 2017 *)
  • Python
    def A284293(n): return 5*int(bin(n+1)[3:])+(10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Jun 28 2025

A376637 The word 1 belongs to the sequence, and whenever a word w belongs to the sequence, then the words consisting of 1's and 2's whose run lengths transform equals w also belong to the sequence.

Original entry on oeis.org

1, 2, 11, 12, 21, 22, 112, 122, 211, 221, 1121, 1122, 1211, 2122, 2211, 2212, 11221, 12112, 12211, 12212, 21121, 21122, 21221, 22112, 112212, 121122, 212211, 221121, 1121122, 1121221, 1122122, 1211221, 1221121, 1221211, 2112122, 2112212, 2122112, 2211211
Offset: 1

Views

Author

Rémy Sigrist, Sep 30 2024

Keywords

Comments

This sequence lists finite smooth words: finite words w composed of 1's and 2's without three or more consecutive equal digits, such that for any k > 0, the k-th iterate of the run lengths transform of w is also a word composed of 1's and 2's without three or more consecutive equal digits.

Examples

			The first terms, alongside their run lengths transform, are:
  n   a(n)  RL(a(n))
  --  ----  --------
   1     1         1
   2     2         1
   3    11         2
   4    12        11
   5    21        11
   6    22         2
   7   112        21
   8   122        12
   9   211        12
  10   221        21
  11  1121       211
  12  1122        22
  13  1211       112
  14  2122       112
  15  2211        22
  16  2212       211
		

Crossrefs

Programs

  • PARI
    \\ See Links section.

A256077 Repeat 2^d times the repunit A002275(d); d = 1, 2, 3...

Original entry on oeis.org

1, 1, 11, 11, 11, 11, 111, 111, 111, 111, 111, 111, 111, 111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111
Offset: 1

Views

Author

M. F. Hasler, Mar 21 2015

Keywords

Comments

Yields the length of the n-th (nonempty) binary word (or word over any 2-letter alphabet, like A007931 or A032810 or A032834) in tally mark notation (A000042).

Programs

  • Mathematica
    lim = 5; lst = Table[(10^n - 1)/9, {n, 0, lim}]; Reap@ For[i = 1, i <= lim, i++, Sow@ Table[lst[[i + 1]], {d, 2^i}]] // Flatten // Rest (* Michael De Vlieger, Apr 01 2015 *)
  • PARI
    a(n)=10^#binary(n+1)\90
    
  • Python
    def A256077(n): return (10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Nov 07 2024

Formula

a(n) = A002275(A000523(n+1)) = A032810(n)-A007931(n) = A032834(n)-A032810(n), etc.

A258410 Nonnegative integers with an equal number of occurrences of all digits in bijective base-2 numeration.

Original entry on oeis.org

4, 5, 18, 20, 21, 24, 25, 27, 70, 74, 76, 77, 82, 84, 85, 88, 89, 91, 98, 100, 101, 104, 105, 107, 112, 113, 115, 119, 270, 278, 282, 284, 285, 294, 298, 300, 301, 306, 308, 309, 312, 313, 315, 326, 330, 332, 333, 338, 340, 341, 344, 345, 347, 354, 356, 357
Offset: 1

Views

Author

Alois P. Heinz, May 29 2015

Keywords

Examples

			4 = 12_bij2, 5 = 21_bij2, 18 = 1122_bij2, 20 = 1212_bij2.
		

Crossrefs

Programs

  • Maple
    p:= proc(n) local d, m, r; m:= n; r:= 0;
          while m>0 do d:= irem(m, 2, 'm');
            if d=0 then d:=2; m:= m-1 fi;
            r:= r+x^d
          od;
          simplify(r/(x+x^2))::integer
        end:
    a:= proc(n) option remember; local k;
          for k from 1+`if`(n=1, 0, a(n-1)) by 1
          while not p(k) do od; k
        end:
    seq(a(n), n=1..70);

A284379 Numbers k with digits 3 and 5 only.

Original entry on oeis.org

3, 5, 33, 35, 53, 55, 333, 335, 353, 355, 533, 535, 553, 555, 3333, 3335, 3353, 3355, 3533, 3535, 3553, 3555, 5333, 5335, 5353, 5355, 5533, 5535, 5553, 5555, 33333, 33335, 33353, 33355, 33533, 33535, 33553, 33555, 35333, 35335, 35353, 35355, 35533, 35535
Offset: 1

Views

Author

Jaroslav Krizek, Mar 26 2017

Keywords

Comments

Prime terms are in A020462.

Crossrefs

Numbers n with digits 5 and k only for k = 0 - 4 and 6 - 9: A169964 (k = 0), A276037 (k = 1), A072961 (k = 2), this sequence (k = 3), A256290 (k = 4), A256291 (k = 6), A284380 (k = 7), A284381 (k = 8), A284382 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {3, 5}];
  • Maple
    A:= 3,5: B:= [3,5];
    for i from 1 to 5 do
      B:= map(t -> (10*t+3,10*t+5), B);
      A:= A, op(B);
    od:
    A; # Robert Israel, Apr 13 2020
  • Mathematica
    Select[Range[35600], Times @@ Boole@ Map[MemberQ[{3, 5}, #] &, IntegerDigits@ #] > 0 &] (* or *)
    Table[FromDigits /@ Union@ Apply[Join, Map[Permutations@ # &, Tuples[{3, 5}, n]]], {n, 5}] // Flatten (* Michael De Vlieger, Mar 27 2017 *)

Formula

From Robert Israel, Apr 13 2020: (Start)
a(n) = 2*A007931(n)+A002275(n).
a(2n+1) = 10*a(n)+3.
a(2n+2) = 10*a(n)+5.
G.f. g(x) satisfies g(x) = 10*(x^2+x)*g(x^2) + (3*x+5*x^2)/(1-x^2). (End)

A284633 Numbers n with digits 3 and 6 only.

Original entry on oeis.org

3, 6, 33, 36, 63, 66, 333, 336, 363, 366, 633, 636, 663, 666, 3333, 3336, 3363, 3366, 3633, 3636, 3663, 3666, 6333, 6336, 6363, 6366, 6633, 6636, 6663, 6666, 33333, 33336, 33363, 33366, 33633, 33636, 33663, 33666, 36333, 36336, 36363, 36366, 36633, 36636
Offset: 1

Views

Author

Jaroslav Krizek, Mar 30 2017

Keywords

Comments

All terms after 3 are composite.

Crossrefs

Cf. A007931.
Numbers n with digits 6 and k only for k = 0..5 and 7..9: A204093 (k = 0), A284293 (k = 1), A284632 (k = 2), this sequence (k = 3), A284634 (k = 4), A256291 (k = 5), A256292 (k = 7), A284635 (k = 8), A284636 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {3, 6}]
  • Mathematica
    Table[Map[FromDigits, Tuples[{3, 6}, {k}]], {k, 5}] // Flatten (* Michael De Vlieger, Mar 30 2017 *)

Formula

a(n) = 3*A007931(n). - Michel Marcus, Mar 30 2017

A284920 Numbers with digits 2 and 4 only.

Original entry on oeis.org

2, 4, 22, 24, 42, 44, 222, 224, 242, 244, 422, 424, 442, 444, 2222, 2224, 2242, 2244, 2422, 2424, 2442, 2444, 4222, 4224, 4242, 4244, 4422, 4424, 4442, 4444, 22222, 22224, 22242, 22244, 22422, 22424, 22442, 22444, 24222, 24224, 24242, 24244, 24422, 24424
Offset: 1

Views

Author

Jaroslav Krizek, Apr 05 2017

Keywords

Comments

All terms are even.

Crossrefs

Cf. Numbers with digits 2 and k only for k = 0 - 1 and 3 - 9: A169965 (k = 0), A007931 (k = 1), A032810 (k = 3), this sequence (k = 4), A072961 (k = 5), A284632 (k = 6), A284921 (k = 7), A284922 (k = 8), A284923 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {2, 4}]
  • Mathematica
    Flatten@ Array[FromDigits /@ Tuples[{2, 4}, #] &, 5] (* Michael De Vlieger, Apr 06 2017 *)

Formula

a(n) = 2 * A007931(n).

A291072 Take n-th string over {1,2} in lexicographic order and apply the Watanabe tag system {00, 1011} described in A291067 (but adapted to the alphabet {1,2}) just once.

Original entry on oeis.org

-1, 22, 1, 1, 122, 122, 11, 11, 11, 11, 2122, 2122, 2122, 2122, 111, 211, 111, 211, 111, 211, 111, 211, 12122, 22122, 12122, 22122, 12122, 22122, 12122, 22122, 1111, 1211, 2111, 2211, 1111, 1211, 2111, 2211, 1111, 1211, 2111, 2211, 1111, 1211, 2111, 2211, 112122, 122122, 212122, 222122
Offset: 1

Views

Author

N. J. A. Sloane, Aug 18 2017

Keywords

Crossrefs

Programs

  • Maple
    # First define the mapping by defining the strings T1 and T2:
    # Work over the alphabet {1,2}
    # 11 / 2212 A284116 This is the "Post Tag System"
    T1:="11"; T2:="2212";
    # 11 / 2122 A291067 These three are from the Watanabe paper
    T1:="11"; T2:="2122";
    # 11 / 2221 A291068
    T1:="11"; T2:="2221";
    # 11 / 1222 A291069
    T1:="11"; T2:="1222";
    with(StringTools):
    # the mapping:
    f1:=proc(w) local L, ws, w2; global T1,T2;
    ws:=convert(w, string);
    if ws="-1" then return("-1"); fi;
    if ws[1]="1" then w2:=Join([ws, T1], ""); else w2:=Join([ws, T2], "");  fi;
    L:=length(w2); if L <= 3 then return("-1"); fi;
    w2[4..L]; end;
    # Construct list of words over {1,2} (A007931)
    a:= proc(n) local m, r, d; m, r:= n, 0;
          while m>0 do d:= irem(m, 2, 'm');
            if d=0 then d:=2; m:= m-1 fi;
            r:= d, r
          od; parse(cat(r))/10
        end:
    WLIST := [seq(a(n), n=1..100)];
    # apply the map once:
    # this produces A289673, A291072, A291073, A291074
    W2:=map(f1,WLIST);

A111066 Numbers with digits 1 and 2 and at least one of each.

Original entry on oeis.org

12, 21, 112, 121, 122, 211, 212, 221, 1112, 1121, 1122, 1211, 1212, 1221, 1222, 2111, 2112, 2121, 2122, 2211, 2212, 2221, 11112, 11121, 11122, 11211, 11212, 11221, 11222, 12111, 12112, 12121, 12122, 12211, 12212, 12221, 12222, 21111, 21112, 21121, 21122, 21211
Offset: 1

Views

Author

Alexandre Wajnberg & Youri Mora, Oct 08 2005

Keywords

Crossrefs

Equals A007931 minus A000042 and A002276. Supersequence of A214218.

Programs

  • Mathematica
    FromDigits /@ Select[ IntegerDigits[ Range[210], 3], Union[ # ] == {1, 2} &] (* Robert G. Wilson v, Oct 09 2005 *)
    Union[FromDigits/@Select[Flatten[Table[Tuples[{1,2},n],{n,2,5}],1], Union[#] == {1,2}&]] (* Harvey P. Dale, Sep 05 2013 *)
  • Python
    from itertools import count, islice
    def agen():
        for i in count(1):
            s = bin(i+1)[3:].replace('1', '2').replace('0', '1')
            if 0 < s.count('1') < len(s):
                yield int(s)
    print(list(islice(agen(), 42))) # Michael S. Branicky, Dec 21 2021

Extensions

More terms from Robert G. Wilson v, Oct 09 2005
Crossrefs from Charles R Greathouse IV, Aug 03 2010

A213972 List of imprimitive words over the alphabet {1,2}.

Original entry on oeis.org

11, 22, 111, 222, 1111, 1212, 2121, 2222, 11111, 22222, 111111, 112112, 121121, 121212, 122122, 211211, 212121, 212212, 221221, 222222, 1111111, 2222222, 11111111, 11121112, 11211121, 11221122, 12111211, 12121212, 12211221, 12221222, 21112111, 21122112, 21212121
Offset: 1

Views

Author

N. J. A. Sloane, Jun 30 2012

Keywords

Comments

A word w is primitive if it cannot be written as u^k with k>1; otherwise it is imprimitive.
The {0,1} version of this sequence is
00, 11, 000, 111, 0000, 0101, 1010, 1111, 00000, 11111, 000000, 001001, 010010, 010101, 011011, 100100, 101010, 101101, 110110, 111111
but this cannot be included as a sequence in the OEIS since it contains nonzero "numbers" beginning with 0.
This sequence results from A213973 by replacing all digits 3 by 2 and from A213974 by replacing digits 2 by 1 and digits 3 by 2. - M. F. Hasler, Mar 10 2014

References

  • A. de Luca and S. Varricchio, Finiteness and Regularity in Semigroups and Formal Languages, Monographs in Theoretical Computer Science, Springer-Verlag, Berlin, 1999. See p. 10.

Crossrefs

See A239018 for the analog over the alphabet {1,2,3}.

Programs

  • Maple
    P:= proc(d) option remember;local m,A;
        A:= map(t -> (10^d-1)/9 + add(10^s, s = t), combinat:-powerset([$0..d-1]));
        for m in numtheory:-divisors(d) minus {d} do
          A:= remove(t -> t = (t mod 10^m)*(10^d-1)/(10^m-1), A);
        od;
        sort(A);
    end proc:
    IP:= proc(d)
       sort([seq(seq(s*(10^d-1)/(10^m-1), s = P(m)), m=numtheory:-divisors(d) minus {d})]);
    end proc:
    seq(op(IP(d)), d=1..10); # Robert Israel, Mar 24 2017
  • Mathematica
    j[w_, k_] := FromDigits /@ (Flatten[Table[#, {k}]] & /@ w); Flatten@ Table[ Union@ Flatten[ j[Tuples [{1, 2}, #], n/#] & /@ Most@ Divisors@ n], {n, 9}] (* Giovanni Resta, Mar 24 2017 *)
  • PARI
    for(n=1, 10, p=vector(n, i, 10^(n-i))~; forvec(d=vector(n, i, [1, 2]), is_A239017(m=d*p)||print1(m", "))) \\ M. F. Hasler, Mar 10 2014

Formula

A213972 = A007931 intersect A239018. - M. F. Hasler, Mar 10 2014

Extensions

More terms from M. F. Hasler, Mar 10 2014
Previous Showing 31-40 of 86 results. Next