cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 237 results. Next

A337323 a(n) = gcd(n, tau(n), sigma(n), pod(n)) where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1
Offset: 1

Views

Author

Jaroslav Krizek, Aug 23 2020

Keywords

Comments

GCD(n, tau(n), sigma(n), pod(n)) = GCD(n, tau(n), sigma(n)). - David A. Corneth, Aug 24 2020

Examples

			a(6) = gcd(6, tau(6), sigma(6), pod(6)) = gcd(6, 4, 12, 36) = 2.
		

Crossrefs

Cf. A336722 (gcd(tau(n), sigma(n), pod(n))).
Cf. A337324 (least m such that gcd(m, tau(m), sigma(m), pod(m)) = n).
Cf. A336723 (lcm(tau(n), sigma(n), pod(n))) = (lcm(n, tau(n), sigma(n), pod(n))).

Programs

  • Magma
    [GCD([n, #Divisors(n), &+Divisors(n), &*Divisors(n)]): n in [1..100]]
    
  • Maple
    f:= proc(n) uses numtheory; igcd(n, tau(n), sigma(n)) end proc:
    map(f, [$1..100]); # Robert Israel, Sep 01 2020
  • Mathematica
    a[n_] := GCD @@ {n, DivisorSigma[0, n], DivisorSigma[1, n]}; Array[a, 100] (* Amiram Eldar, Aug 24 2020 *)
  • PARI
    a(n) = my(f=factor(n)); gcd([n, sigma(f), numdiv(f)]); \\ Michel Marcus, Apr 01 2021

Formula

a(p) = 1 for p = primes (A000040).
a(n) = 1 for n = p^k, p prime, k >= 0 (A000961). - Bernard Schott, Apr 01 2021

A174897 a(n) = characteristic function of numbers k such that A007955(m) = k has solution for some m, where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Jaroslav Krizek, Apr 01 2010

Keywords

Comments

a(n) = characteristic function of numbers from A174895(n).
a(n) = 1 if A007955(m) = n for any m, else 0.

Crossrefs

Programs

  • Mathematica
    Block[{nn = 105, t}, t = ConstantArray[0, nn]; ReplacePart[t, Map[# -> 1 &, TakeWhile[Sort@ Array[Times @@ Divisors@ # &, nn], # <= 105 &]]]] (* Michael De Vlieger, Oct 20 2017 *)
  • PARI
    up_to = 65537;
    v174897 = vector(up_to);
    A007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)); \\ This function from Charles R Greathouse IV, Feb 11 2011
    for(k=1, up_to, t=A007955(k); if(t<=up_to, v174897[t] = 1));
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    write_to_bfile(1,v174897,"b174897_upto65537.txt");
    \\ Antti Karttunen, Oct 20 2017

Formula

a(n) = 1 - A174898(n).

Extensions

Name edited and more terms added by Antti Karttunen, Oct 20 2017

A174898 a(n) = characteristic function of numbers k such that A007955(m) = k has no solution for any m, where A007955(m) = product of divisors of m.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, Apr 01 2010

Keywords

Comments

a(n) = characteristic function of numbers from A174896(n).
a(n) = 1 if A007955(m) not equal to n for any m, else 0.

Crossrefs

Formula

a(n) = 1 - A174897(n).

Extensions

More terms from Antti Karttunen, Oct 20 2017

A258896 Divisorial primes p of the form p = 1 + k^2 where k^2 = Product_{d|k} d= A007955(k) for some k.

Original entry on oeis.org

2, 37, 101, 197, 677, 5477, 8837, 17957, 21317, 42437, 98597, 106277, 148997, 217157, 401957, 454277, 1196837, 1378277, 1674437, 1705637, 1833317, 1865957, 2390117, 2735717, 3118757, 3147077, 3587237, 3865157, 4104677, 4519877, 4726277, 5410277, 6728837, 7043717
Offset: 1

Views

Author

Jaroslav Krizek, Jun 20 2015

Keywords

Comments

Sequence lists divisorial primes p from A258455 such that p-1 = A007955(sqrt(p-1)).
If 1 + Product_{d|k} d for some k > 1 is a prime p other than 3, then p-1 is a square and p is either of the form k^2 + 1 or h^2 + 1 where h>k. In this sequence are divisorial primes of the first kind. Divisorial primes of the second kind are in A258897.
With number 3, complement of A258897 with respect to A258455.
All terms > 2 are of the form 4*q^2 + 1 where q = prime (see A052292).
Subsequence of A002496 (primes of the form k^2 + 1), and the corresponding k are a subsequence of A007422. - Michel Marcus, Jul 09 2015

Examples

			Number 101 is in sequence because 100 is the product of divisors of 10; 101 - 1 = 100 = A007955(sqrt(101 - 1)).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10000000] | IsPrime(n) and n-1 eq (&*(Divisors(Floor(Sqrt(n-1)))))];
    
  • PARI
    lista(nn) = {forprime(p=2, nn, if (issquare(pp=(p-1)) && (k=sqrtint(pp)) && (d=divisors(k)) && (1+prod(j=1, #d, d[j])==p), print1(p, ", ")););} \\ Michel Marcus, Jul 08 2015

Formula

For n>1; a(n) = 4*(A052291(n))^2 + 1 = A052292(n).

A259021 Numbers k such that k^2 = Product_{d|k} d (= A007955(k)) and simultaneously k^2 + 1 is a divisorial prime (A258455).

Original entry on oeis.org

1, 6, 10, 14, 26, 74, 94, 134, 146, 206, 314, 326, 386, 466, 634, 674, 1094, 1174, 1294, 1306, 1354, 1366, 1546, 1654, 1766, 1774, 1894, 1966, 2026, 2126, 2174, 2326, 2594, 2654, 2746, 2974, 2986, 3046, 3106, 3134, 3214, 3254, 3274, 3314, 3326, 3334, 3446
Offset: 1

Views

Author

Jaroslav Krizek, Sep 01 2015

Keywords

Comments

First deviation from A259020 is at a(15).
With number 2 complement of A259023 with respect to A118369.
1 together with squarefree semiprimes (A006881) k such that k^2 + 1 is prime. Without the squarefree restriction there will be only one more term, 4. - Amiram Eldar, Sep 25 2022

Examples

			The number 10 is in sequence because 10^2 = 1*2*5*10 = 100 and simultaneously 101 is prime.
		

Crossrefs

Union of {1} and (intersection of A005574 and A006881).
Subsequence of A007422, A048943, A259020, A118369.

Programs

  • Magma
    [Floor(Sqrt(n-1)): n in [1..10000000] | IsPrime(n) and n-1 eq (&*(Divisors(Floor(Sqrt(n-1)))))];
    
  • Mathematica
    Prepend[2*Select[Prime[Range[2, 300]], PrimeQ[4 #^2 + 1] &], 1] (* Amiram Eldar, Sep 25 2022 *)
  • Sage
    a = [n for n in range(1,100000) if is_prime(n^2+1) and n^2==prod(list(divisors(n)))] # Danny Rorabaugh, Sep 21 2015

Formula

a(n) = 2*A052291(n) for n > 1. - Amiram Eldar, Sep 25 2022

A334662 a(n) = Sum_{d|n} gcd(tau(d), pod(d)), where pod(k) is the product of the divisors of k (A007955).

Original entry on oeis.org

1, 3, 2, 4, 2, 8, 2, 8, 5, 8, 2, 15, 2, 8, 4, 9, 2, 17, 2, 11, 4, 8, 2, 27, 3, 8, 6, 11, 2, 22, 2, 11, 4, 8, 4, 33, 2, 8, 4, 23, 2, 22, 2, 11, 10, 8, 2, 30, 3, 11, 4, 11, 2, 26, 4, 23, 4, 8, 2, 43, 2, 8, 10, 12, 4, 22, 2, 11, 4, 22, 2, 57, 2, 8, 8, 11, 4, 22
Offset: 1

Views

Author

Jaroslav Krizek, May 07 2020

Keywords

Comments

Inverse Möbius transform of A306671. - Antti Karttunen, May 19 2020

Examples

			a(6) = gcd(tau(1), pod(1)) + gcd(tau(2), pod(2)) + gcd(tau(3), pod(3)) + gcd(tau(6), pod(6)) = gcd(1, 1) + gcd(2, 2) + gcd(2, 3) + gcd(4, 36) = 1 + 2 + 1 + 4 = 8.
		

Crossrefs

Cf. A334579 (Sum_{d|n} gcd(tau(d), sigma(d))), A334663 (Sum_{d|n} gcd(sigma(d), pod(d))).
Cf. A000005 (tau(n)), A007955 (pod(n)), A306671 (gcd(tau(n), pod(n))).

Programs

  • Magma
    [&+[GCD(#Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • PARI
    a(n) = sumdiv(n, d, gcd(numdiv(d), vecprod(divisors(d)))); \\ Michel Marcus, May 08 2020

Formula

a(p) = 2 for p = odd primes (A065091).

A334663 a(n) = Sum_{d|n} gcd(sigma(d), pod(d)), where pod(k) is the product of the divisors of k (A007955).

Original entry on oeis.org

1, 2, 2, 3, 2, 15, 2, 4, 3, 5, 2, 20, 2, 7, 6, 5, 2, 19, 2, 8, 4, 7, 2, 33, 3, 5, 4, 64, 2, 93, 2, 6, 6, 5, 4, 25, 2, 7, 4, 19, 2, 69, 2, 12, 10, 7, 2, 38, 3, 7, 12, 8, 2, 44, 4, 73, 4, 5, 2, 124, 2, 7, 6, 7, 4, 167, 2, 8, 6, 27, 2, 41, 2, 5, 8, 12, 4, 43, 2
Offset: 1

Views

Author

Jaroslav Krizek, May 07 2020

Keywords

Comments

Inverse Möbius transform of A306682. - Antti Karttunen, May 09 2020

Examples

			a(6) = gcd(sigma(1), pod(1)) + gcd(sigma(2), pod(2)) + gcd(sigma(3), pod(3)) + gcd(sigma(6), pod(6)) = gcd(1, 1) + gcd(3, 2) + gcd(4, 3) + gcd(12, 36) = 1 + 1 + 1 + 12 = 15.
		

Crossrefs

Cf. A334579 (Sum_{d|n} gcd(tau(d), sigma(d))), A334662 (Sum_{d|n} gcd(tau(d), pod(d))).
Cf. A000203 (sigma(n)), A007955 (pod(n)), A306682 (gcd(sigma(n), pod(n))).
Cf. A334731 (product instead of sum).

Programs

  • Magma
    [&+[GCD(&+Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • PARI
    a(n) = sumdiv(n, d, gcd(sigma(d), vecprod(divisors(d)))); \\ Michel Marcus, May 08 2020

Formula

a(p) = 2 for p = primes (A000040).

A083267 Product of related numbers (counted in A073757) belonging to n; related = {divisor-set, RRS}: a(n) = A007955(n)*A001783(n).

Original entry on oeis.org

1, 2, 6, 24, 120, 180, 5040, 6720, 60480, 18900, 39916800, 665280, 6227020800, 3783780, 201801600, 2075673600, 355687428096000, 496215720, 121645100408832000, 69837768000, 20858213376000, 604969665300, 25852016738884976640000, 12336143339520, 5170403347776995328000
Offset: 1

Views

Author

Labos Elemer, May 13 2003

Keywords

Examples

			For n = 10: related terms = {1,2,5,10,3,7,9}, product = 1*2*5*10*1*3*7*9 = 18900 = a(10).
		

Crossrefs

Cf. A073757 (count), A083266 (sum), A083268 (LCM), A083267 (product), A001783, A007955.

Programs

  • Mathematica
    a[n_] := n^(DivisorSigma[0, n]/2) * Times@@ Select[Range[n], CoprimeQ[n, #] &]; Array[a, 30] (* Amiram Eldar, Jun 20 2024 *)

Extensions

More terms from Amiram Eldar, Jun 20 2024

A283995 Least number with same prime signature as the n-th divisorial: a(n) = A046523(A007955(n)).

Original entry on oeis.org

1, 2, 2, 8, 2, 36, 2, 64, 8, 36, 2, 1728, 2, 36, 36, 1024, 2, 1728, 2, 1728, 36, 36, 2, 331776, 8, 36, 64, 1728, 2, 810000, 2, 32768, 36, 36, 36, 10077696, 2, 36, 36, 331776, 2, 810000, 2, 1728, 1728, 36, 2, 254803968, 8, 1728, 36, 1728, 2, 331776, 36, 331776, 36, 36, 2, 46656000000, 2, 36, 1728, 2097152, 36, 810000, 2, 1728, 36, 810000, 2, 139314069504, 2, 36
Offset: 1

Views

Author

Antti Karttunen, Mar 22 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[n == 1, 1, Times @@ MapIndexed[Prime[First@ #2]^#1 &, FactorInteger[Times @@ Divisors@ n][[All, -1]]]], {n, 74}] (* Michael De Vlieger, Mar 22 2017 *)
  • PARI
    A007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)); \\ From Charles R Greathouse IV, Feb 11 2011
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From Charles R Greathouse IV, Aug 17 2011
    A283995(n) = A046523(A007955(n));
    
  • Python
    from math import prod, isqrt
    from sympy import prime, factorint, divisor_count
    def A283995(n): return (lambda n:prod(prime(i+1)**e for i, e in enumerate(sorted(factorint(n).values(), reverse=True))))((isqrt(n) if (c:=divisor_count(n)) & 1 else 1)*n**(c//2)) # Chai Wah Wu, Jun 25 2022
  • Scheme
    (define (A283995 n) (A046523 (A007955 n)))
    

Formula

a(n) = A046523(A007955(n)).

A322671 a(n) = Sum_{d|n} (pod(d)/d), where pod(k) is the product of the divisors of k (A007955).

Original entry on oeis.org

1, 2, 2, 4, 2, 9, 2, 12, 5, 13, 2, 155, 2, 17, 18, 76, 2, 336, 2, 415, 24, 25, 2, 13987, 7, 29, 32, 803, 2, 27035, 2, 1100, 36, 37, 38, 280418, 2, 41, 42, 64423, 2, 74133, 2, 1963, 2046, 49, 2, 5322467, 9, 2518, 54, 2735, 2, 157827, 58, 176427, 60, 61, 2
Offset: 1

Views

Author

Jaroslav Krizek, Dec 23 2018

Keywords

Examples

			For n = 6; a(6) = pod(1)/1 + pod(2)/2 + pod(3)/3 + pod(6)/6 = 1/1 + 2/2 + 3/3 + 36/6 = 9.
		

Crossrefs

Programs

  • Magma
    [&+[&*[c: c in Divisors(d)] / d: d in Divisors(n)]: n in [1..100]];
    
  • Maple
    pod:= proc(n) convert(numtheory:-divisors(n),`*`) end proc:
    f:= proc(n) local d; add(pod(d)/d, d = numtheory:-divisors(n)) end proc:
    map(f, [$1..100]); # Robert Israel, Dec 23 2018
  • Mathematica
    Array[Sum[Apply[Times, Divisors@ d]/d, {d, Divisors@ #}] &, 59] (* Michael De Vlieger, Jan 19 2019 *)
  • PARI
    a(n) = sumdiv(n, d, vecprod(divisors(d))/d); \\ Michel Marcus, Dec 23 2018
    
  • Python
    from math import isqrt
    from sympy import divisor_count, divisors
    def A322671(n): return sum(isqrt(d)**(c-2) if (c:=divisor_count(d)) & 1 else d**(c//2-1) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = n for n = 1, 2 and 4.
a(n) = n + (tau(n) - 1) = n + 3 for squarefree semiprimes (A006881).
a(n) = 2 if n is prime. - Robert Israel, Dec 23 2018
Previous Showing 11-20 of 237 results. Next