cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 237 results. Next

A334730 a(n) = Product_{d|n} gcd(tau(d), pod(d)) where tau(k) is the number of divisors of k (A000005) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 2, 1, 2, 1, 8, 1, 8, 3, 8, 1, 48, 1, 8, 1, 8, 1, 144, 1, 16, 1, 8, 1, 1536, 1, 8, 3, 16, 1, 256, 1, 16, 1, 8, 1, 7776, 1, 8, 1, 512, 1, 256, 1, 16, 9, 8, 1, 3072, 1, 16, 1, 16, 1, 1152, 1, 512, 1, 8, 1, 36864, 1, 8, 9, 16, 1, 256, 1, 16, 1, 256, 1, 2985984, 1, 8, 3, 16, 1, 256, 1
Offset: 1

Views

Author

Jaroslav Krizek, May 09 2020

Keywords

Examples

			a(6) = gcd(tau(1), pod(1)) * gcd(tau(2), pod(2)) * gcd(tau(3), pod(3)) * gcd(tau(6), pod(6)) = gcd(1, 1) * gcd(2, 2) * gcd(2, 3) * gcd(4, 36) = 1 * 2 * 1 * 4 = 8.
		

Crossrefs

Cf. A334729 (Product_{d|n} gcd(tau(d), sigma(d))), A334662 (Sum_{d|n} gcd(tau(d), pod(d))).
Cf. A000005 (tau(n)), A007955 (pod(n)), A306671 (gcd(tau(n), pod(n))).

Programs

  • Magma
    [&*[GCD(#Divisors(d), &*Divisors(d)): d in Divisors(n)]: n in [1..100]]
    
  • Mathematica
    a[n_] := Product[GCD[DivisorSigma[0, d], d^(DivisorSigma[0, d]/2)], {d, Divisors[n]}]; Array[a, 100] (* Amiram Eldar, May 09 2020 *)
  • PARI
    pod(n) = vecprod(divisors(n));
    a(n) = my(d=divisors(n)); prod(k=1, #d, gcd(numdiv(d[k]), pod(d[k]))); \\ Michel Marcus, May 09-11 2020

Formula

a(p) = 1 for p = odd primes (A065091).

A337324 a(n) is the smallest number m such that gcd(m, tau(m), sigma(m), pod(m)) = n where tau(k) is the number of divisors of k (A000005), sigma(k) is the sum of divisors of k (A000203) and pod(k) is the product of divisors of k (A007955).

Original entry on oeis.org

1, 6, 18, 24, 5000, 90, 66339, 56, 288, 3240, 10036224, 60, 582160384, 20412, 16200, 3968, 49030215219, 612, 4637065216, 1520, 142884, 912384, 98881718827959, 480, 7543125, 479232, 3175200, 5824, 26559758051835904, 76950, 25796647321600, 2688, 491774976, 1268973568
Offset: 1

Views

Author

Jaroslav Krizek, Aug 23 2020

Keywords

Comments

From David A. Corneth, Aug 24 2020: (Start)
a(35) <= 1289027059712000000.
a(36) <= 136064563937280.
a(37) = 207816012706349056.
a(38) <= 1835772101525504.
a(39) <= 418089296461824.
a(40) <= 11698803719536640.
gcd(m, tau(m), sigma(m), pod(m)) = gcd(m, tau(m), sigma(m)) which may ease the search.
(End)

Examples

			For n = 6; a(6) = 90 because 90 is the smallest number with gcd(90, tau(90), sigma(90), pod(90)) = gcd(90, 12, 234, 531441000000) = 6.
		

Crossrefs

Cf. A337323 (gcd(n, tau(n), sigma(n), pod(n))).
Cf. A337325 (least m such that gcd(tau(m), sigma(m), pod(m)) = n).

Programs

  • Magma
    [Min([m: m in[1..10^5] | GCD([m, #Divisors(m), &+Divisors(m), &*Divisors(m)]) eq k]): k in [1..10]]
    
  • PARI
    a(n) = {for(i = 1, oo, f = factor(i); if(gcd([i, numdiv(f), sigma(f)]) == n, return(i)))} \\ David A. Corneth, Aug 24 2020

Extensions

a(11) from Amiram Eldar, Aug 24 2020
More terms from Jaroslav Krizek and David A. Corneth, Aug 24 2020

A346956 Numbers k such that A000203(k) and A007955(k) are both divisible by A187680(k).

Original entry on oeis.org

4, 9, 14, 16, 25, 38, 42, 49, 51, 55, 62, 64, 70, 81, 86, 92, 96, 117, 121, 130, 134, 138, 140, 158, 159, 161, 168, 169, 182, 206, 209, 234, 254, 256, 266, 267, 278, 282, 284, 289, 302, 322, 326, 351, 361, 376, 390, 398, 408, 410, 422, 426, 434, 446, 477, 508, 529, 532, 534, 542, 551, 566, 590
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Aug 08 2021

Keywords

Comments

Numbers k such that both the sum s and product p of the divisors of k are divisible by (p mod s).

Examples

			a(3) = 14 is a term because A000203(14) = 1+2+7+14 = 24, A007955(14) = 1*2*7*14 = 196, A187680(14) = 196 mod 24 = 4, and both 24 and 196 are divisible by 4.
		

Crossrefs

Includes A188061.

Programs

  • Maple
    filter:= proc(n) local d,s,p,r;
      d:= numtheory:-divisors(n);
      s:= convert(d,`+`);
      p:= convert(d,`*`);
      r:= p mod s;
      r <> 0 and p mod r = 0 and s mod r = 0
    end proc:
    select(filter, [$1..1000]);
  • Mathematica
    okQ[n_] := Module[{d, s, p, m},
      d = Divisors[n];
      s = Total[d];
      p = Times @@ d;
      m = Mod[p, s];
      If[m == 0, False, Divisible[s, m] && Divisible[p, m]]];
    Select[Range[1000], okQ] (* Jean-François Alcover, May 16 2023 *)
  • PARI
    isok(k) = my(d=divisors(k), s=vecsum(d), p=vecprod(d), m=p % s); (m>0) && !(s%m) && !(p%m); \\ Michel Marcus, Aug 09 2021

A174900 a(n) = the smallest numbers k such that A007955(k) = n, or 0 if there is no such k, where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 2, 3, 0, 5, 0, 7, 4, 0, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 0, 0, 23, 0, 0, 0, 9, 0, 29, 0, 31, 0, 0, 0, 0, 6, 37, 0, 0, 0, 41, 0, 43, 0, 0, 0, 47, 0, 0, 0, 0, 0, 53, 0, 0, 0, 0, 0, 59, 0, 61, 0, 0, 8, 0, 0, 67, 0, 0, 0, 71, 0, 73, 0, 0, 0, 0, 0, 79, 0, 0, 0, 83
Offset: 1

Views

Author

Jaroslav Krizek, Apr 01 2010

Keywords

Comments

a(n) = the largest numbers k such that A007955 (k) = n, or 0 if there is no such k.

Crossrefs

Cf. A007955.

Programs

  • Mathematica
    With[{m = 100}, s[n_] := n^(DivisorSigma[0, n]/2); (FirstPosition[Array[s, m], #] & /@ Range[m]) /. Missing["NotFound"] -> 0 // Flatten] (* Amiram Eldar, Aug 06 2024 *)

Extensions

More terms from Amiram Eldar, Aug 06 2024

A174901 a(n) = the smallest numbers k such that A007955(k) >= n, where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 2, 3, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Jaroslav Krizek, Apr 01 2010

Keywords

A174932 a(n) = Sum_{d|n} A007955(d) * A000027(n/d) = Sum_{d|n} A007955(d) * (n/d), where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 4, 6, 16, 10, 54, 14, 96, 45, 130, 22, 1860, 26, 238, 270, 1216, 34, 6048, 38, 8300, 504, 550, 46, 335688, 175, 754, 864, 22484, 58, 811050, 62, 35200, 1188, 1258, 1330, 10095048, 74, 1558, 1638, 2576920, 82, 3113586, 86, 86372, 92070, 2254, 94, 255478416
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2010

Keywords

Examples

			For n = 4, A007955(n) = b(n): a(4) = b(1)*(4/1) + b(2)*(4/2) + b(4)*(4/4) = 1*4 + 2*2 + 8*1 = 16.
		

Crossrefs

Cf. A007955 (product of divisors), A322671.

Programs

  • Magma
    [&+[&*Divisors(d)*(n div d):d in Divisors(n)]:n in [1..50]]; // Marius A. Burtea, Jan 05 2020
    
  • PARI
    a(n)={n*sumdiv(n, d, vecprod(divisors(d))/d)} \\ Andrew Howroyd, Jan 05 2020
    
  • Python
    from math import isqrt
    from sympy import divisor_count, divisors
    def A174932(n): return n*sum(isqrt(d)**(c-2) if (c:=divisor_count(d)) & 1 else d**(c//2-1) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = n*A322671(n). - Andrew Howroyd, Jan 05 2020

A174935 a(n) = Sum_{k<=n} A007955(k) * A000027(k) = Sum_{k<=n} A007955(k) * k, where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 5, 14, 46, 71, 287, 336, 848, 1091, 2091, 2212, 22948, 23117, 25861, 29236, 45620, 45909, 150885, 151246, 311246, 320507, 331155, 331684, 8294308, 8297433, 8315009, 8334692, 8949348, 8950189, 33250189, 33251150, 34299726, 34335663, 34374967, 34417842, 397214898
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2010

Keywords

Examples

			For n = 4, A007955(n) = b(n): a(4) = b(1)*1 + b(2)*2 + b(3)* 3 + b(4)*4 = 1*1 + 2*2 + 3*3 + 8*4 = 46.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[k^(DivisorSigma[0, k]/2 + 1), {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Aug 06 2024 *)

Extensions

More terms from Amiram Eldar, Aug 06 2024

A174936 a(n) = Sum_{d|n} A007955(d) * A007955(n/d), where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 4, 6, 20, 10, 84, 14, 160, 63, 220, 22, 3648, 26, 420, 480, 2368, 34, 11988, 38, 16480, 924, 1012, 46, 671424, 275, 1404, 1620, 44800, 58, 1621860, 62, 70656, 2244, 2380, 2520, 20190816, 74, 2964, 3120, 5154240, 82, 6226836, 86, 172480, 183870, 4324, 94, 510973440, 735, 251500
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2010

Keywords

Examples

			For n = 4, A007955(n) = b(n): a(4) = b(1)*b(4/1) + b(2)*b(4/2) + b(4)*b(4/4) = 1*8 + 2*2 + 8*1 = 20.
		

Crossrefs

Cf. A007955.

Programs

  • Magma
    [&+[&*Divisors(d)*&*Divisors(n div d):d in Divisors(n)]:n in [1..50]]; // Marius A. Burtea, Jan 05 2020
  • PARI
    a(n)={sumdiv(n, d, vecprod(divisors(d))*vecprod(divisors(n/d)))} \\ Andrew Howroyd, Jan 05 2020
    

Extensions

Terms a(31) and beyond from Andrew Howroyd, Jan 05 2020

A174940 a(n) = Sum_{d|n} A007955(d) * A008683(n/d) = Sum_{d|n} A007955(d) * mu(n/d), where A007955(m) = number of divisors of m.

Original entry on oeis.org

1, 1, 2, 6, 4, 32, 6, 56, 24, 94, 10, 1686, 12, 188, 218, 960, 16, 5772, 18, 7894, 432, 472, 22, 329992, 120, 662, 702, 21750, 28, 809648, 30, 31744, 1076, 1138, 1214, 10070172, 36, 1424, 1506, 2551944, 40, 3111034, 42, 84694, 90876, 2092, 46, 254471232, 336, 124780
Offset: 1

Views

Author

Jaroslav Krizek, Apr 02 2010

Keywords

Examples

			For n = 4, A007955(n) = b(n): a(4) = b(1)*mu(4/1) + b(2)*mu(4/2) + b(4)*mu(4/4) = 1*0 + 2*(-1) + 8*1 = 6.
		

Crossrefs

Cf. A008683 (mu), A007955 (product of divisors).

Programs

  • Magma
    [&+[&*Divisors(d)*MoebiusMu(n div d):d in Divisors(n)]:n in [1..50]]; // Marius A. Burtea, Jan 05 2020
  • Mathematica
    a[n_] := Sum[ MoebiusMu[n/d] * Times @@ Divisors[d], {d, Divisors[n]} ]; Table[ a[n], {n, 1, 30} ] (* Jean-François Alcover, Jan 09 2013 *)
  • PARI
    a(n)={sumdiv(n, d, vecprod(divisors(d))*moebius(n/d))} \\ Andrew Howroyd, Jan 05 2020
    

Formula

Moebius transform of A007955. - Andrew Howroyd, Jan 05 2020

Extensions

Terms a(31) and beyond from Andrew Howroyd, Jan 05 2020

A265310 Least positive k such that the product of divisors of n (A007955) divides k!.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 9, 13, 14, 10, 12, 17, 15, 19, 15, 14, 22, 23, 16, 15, 26, 15, 21, 29, 20, 31, 16, 22, 34, 14, 21, 37, 38, 26, 20, 41, 28, 43, 33, 15, 46, 47, 24, 21, 25, 34, 39, 53, 27, 22, 28, 38, 58, 59, 25, 61, 62, 21, 24, 26, 44, 67, 51, 46, 28, 71, 27, 73
Offset: 1

Views

Author

Gionata Neri, Dec 06 2015

Keywords

Comments

Conjecture: a(n) = n if and only if n is prime, 2*prime, 1, 8 or 9.

Crossrefs

Cf. A007955.

Programs

  • Maple
    A265310:= proc(n) local F,f,tau,a,p,k;
          F:= ifactors(n)[2];
          tau:= mul(1+f[2],f=F);
          k:= 1;
          for f in F do
            a:= f[2]*tau/2;
            p:= f[1];
            while add(floor(k/p^j),j=1..ilog[p](k)) < a do k:= p*(1+floor(k/p)) od;
          od;
          k
    end proc:
    map(A265310, [$1..100]); # Robert Israel, Dec 07 2015
  • Mathematica
    Table[k = 1; While[! Divisible[k!, Times @@ Divisors@ n], k++]; k, {n, 73}] (* Michael De Vlieger, Dec 06 2015 *)
  • PARI
    a007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2));
    a(n) = {k=1; while(k, if(k! % a007955(n)==0, return(k)); k++)}
    vector(100, n, a(n)) \\ Altug Alkan, Dec 06 2015
Previous Showing 31-40 of 237 results. Next